Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China.

Identifieur interne : 001742 ( Main/Exploration ); précédent : 001741; suivant : 001743

Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China.

Auteurs : Ang Wang [République populaire de Chine] ; Yun-Ting Fang ; De-Xiang Chen ; Keisuke Koba ; Akiko Makabe ; Yi-De Li ; Tu-Shou Luo ; Muneoki Yoh

Source :

RBID : pubmed:24085637

Descripteurs français

English descriptors

Abstract

The foliar stable N isotope ratio (δ(15)N) can provide integrated information on ecosystem N cycling. Here we present the δ(15)N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ(15)N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ(15)N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more (15)N enriched. Our results show that foliar δ(15)N ranged from -5.1 to 1.3‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 (-) had low δ(15)N (-11.4 to -3.2‰) and plant NO3 (-) uptake could not explain the negative foliar δ(15)N values (NH4 (+) was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 (+) uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 (+). The variation in foliar δ(15)N among species (by about 6‰) was smaller than in many N-limited ecosystems, which is typically about or over 10‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ(15)N and the enrichment factor (foliar δ(15)N minus soil δ(15)N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ(15)N between primary and secondary forests.

DOI: 10.1007/s00442-013-2778-5
PubMed: 24085637


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China.</title>
<author>
<name sortKey="Wang, Ang" sort="Wang, Ang" uniqKey="Wang A" first="Ang" last="Wang">Ang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520</wicri:regionArea>
<wicri:noRegion>510520</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fang, Yun Ting" sort="Fang, Yun Ting" uniqKey="Fang Y" first="Yun-Ting" last="Fang">Yun-Ting Fang</name>
</author>
<author>
<name sortKey="Chen, De Xiang" sort="Chen, De Xiang" uniqKey="Chen D" first="De-Xiang" last="Chen">De-Xiang Chen</name>
</author>
<author>
<name sortKey="Koba, Keisuke" sort="Koba, Keisuke" uniqKey="Koba K" first="Keisuke" last="Koba">Keisuke Koba</name>
</author>
<author>
<name sortKey="Makabe, Akiko" sort="Makabe, Akiko" uniqKey="Makabe A" first="Akiko" last="Makabe">Akiko Makabe</name>
</author>
<author>
<name sortKey="Li, Yi De" sort="Li, Yi De" uniqKey="Li Y" first="Yi-De" last="Li">Yi-De Li</name>
</author>
<author>
<name sortKey="Luo, Tu Shou" sort="Luo, Tu Shou" uniqKey="Luo T" first="Tu-Shou" last="Luo">Tu-Shou Luo</name>
</author>
<author>
<name sortKey="Yoh, Muneoki" sort="Yoh, Muneoki" uniqKey="Yoh M" first="Muneoki" last="Yoh">Muneoki Yoh</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24085637</idno>
<idno type="pmid">24085637</idno>
<idno type="doi">10.1007/s00442-013-2778-5</idno>
<idno type="wicri:Area/Main/Corpus">001A92</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A92</idno>
<idno type="wicri:Area/Main/Curation">001A92</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A92</idno>
<idno type="wicri:Area/Main/Exploration">001A92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China.</title>
<author>
<name sortKey="Wang, Ang" sort="Wang, Ang" uniqKey="Wang A" first="Ang" last="Wang">Ang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520</wicri:regionArea>
<wicri:noRegion>510520</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fang, Yun Ting" sort="Fang, Yun Ting" uniqKey="Fang Y" first="Yun-Ting" last="Fang">Yun-Ting Fang</name>
</author>
<author>
<name sortKey="Chen, De Xiang" sort="Chen, De Xiang" uniqKey="Chen D" first="De-Xiang" last="Chen">De-Xiang Chen</name>
</author>
<author>
<name sortKey="Koba, Keisuke" sort="Koba, Keisuke" uniqKey="Koba K" first="Keisuke" last="Koba">Keisuke Koba</name>
</author>
<author>
<name sortKey="Makabe, Akiko" sort="Makabe, Akiko" uniqKey="Makabe A" first="Akiko" last="Makabe">Akiko Makabe</name>
</author>
<author>
<name sortKey="Li, Yi De" sort="Li, Yi De" uniqKey="Li Y" first="Yi-De" last="Li">Yi-De Li</name>
</author>
<author>
<name sortKey="Luo, Tu Shou" sort="Luo, Tu Shou" uniqKey="Luo T" first="Tu-Shou" last="Luo">Tu-Shou Luo</name>
</author>
<author>
<name sortKey="Yoh, Muneoki" sort="Yoh, Muneoki" uniqKey="Yoh M" first="Muneoki" last="Yoh">Muneoki Yoh</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>China (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Nitrogen Cycle (MeSH)</term>
<term>Nitrogen Isotopes (analysis)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plants (chemistry)</term>
<term>Plants (microbiology)</term>
<term>Soil (chemistry)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Chine (MeSH)</term>
<term>Cycle de l'azote (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Isotopes de l'azote (analyse)</term>
<term>Mycorhizes (MeSH)</term>
<term>Plantes (composition chimique)</term>
<term>Plantes (microbiologie)</term>
<term>Sol (composition chimique)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Isotopes de l'azote</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Plants</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Plantes</term>
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>China</term>
<term>Ecosystem</term>
<term>Mycorrhizae</term>
<term>Nitrogen Cycle</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Biomasse</term>
<term>Chine</term>
<term>Cycle de l'azote</term>
<term>Mycorhizes</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The foliar stable N isotope ratio (δ(15)N) can provide integrated information on ecosystem N cycling. Here we present the δ(15)N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ(15)N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ(15)N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more (15)N enriched. Our results show that foliar δ(15)N ranged from -5.1 to 1.3‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 (-) had low δ(15)N (-11.4 to -3.2‰) and plant NO3 (-) uptake could not explain the negative foliar δ(15)N values (NH4 (+) was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 (+) uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 (+). The variation in foliar δ(15)N among species (by about 6‰) was smaller than in many N-limited ecosystems, which is typically about or over 10‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ(15)N and the enrichment factor (foliar δ(15)N minus soil δ(15)N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ(15)N between primary and secondary forests.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24085637</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>174</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China.</ArticleTitle>
<Pagination>
<MedlinePgn>567-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-013-2778-5</ELocationID>
<Abstract>
<AbstractText>The foliar stable N isotope ratio (δ(15)N) can provide integrated information on ecosystem N cycling. Here we present the δ(15)N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ(15)N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ(15)N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more (15)N enriched. Our results show that foliar δ(15)N ranged from -5.1 to 1.3‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 (-) had low δ(15)N (-11.4 to -3.2‰) and plant NO3 (-) uptake could not explain the negative foliar δ(15)N values (NH4 (+) was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 (+) uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 (+). The variation in foliar δ(15)N among species (by about 6‰) was smaller than in many N-limited ecosystems, which is typically about or over 10‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ(15)N and the enrichment factor (foliar δ(15)N minus soil δ(15)N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ(15)N between primary and secondary forests.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ang</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Yun-Ting</ForeName>
<Initials>YT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>De-Xiang</ForeName>
<Initials>DX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koba</LastName>
<ForeName>Keisuke</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Makabe</LastName>
<ForeName>Akiko</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yi-De</ForeName>
<Initials>YD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Tu-Shou</ForeName>
<Initials>TS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yoh</LastName>
<ForeName>Muneoki</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058458" MajorTopicYN="Y">Nitrogen Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24085637</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-013-2778-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 1996 Aug;107(3):386-394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2001 Sep 1;73(17):4145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11569803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2009 Jul;23(13):1892-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19462406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2010 May;164(1-4):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19353289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2010 Sep 15;24(17):2499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20740523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 22;104(21):8902-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17502607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):980-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19563444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Aug 21;46(16):8723-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22809398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 Mar 1;16(3):153-162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2011 Mar 1;83(5):1850-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21302935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Aug;153(2):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17479293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Aug;120(3):405-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2010 Jul;53(7):798-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Jul;115(3):406-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 May 16;11:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21575190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Dec;100(4):406-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306929</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, De Xiang" sort="Chen, De Xiang" uniqKey="Chen D" first="De-Xiang" last="Chen">De-Xiang Chen</name>
<name sortKey="Fang, Yun Ting" sort="Fang, Yun Ting" uniqKey="Fang Y" first="Yun-Ting" last="Fang">Yun-Ting Fang</name>
<name sortKey="Koba, Keisuke" sort="Koba, Keisuke" uniqKey="Koba K" first="Keisuke" last="Koba">Keisuke Koba</name>
<name sortKey="Li, Yi De" sort="Li, Yi De" uniqKey="Li Y" first="Yi-De" last="Li">Yi-De Li</name>
<name sortKey="Luo, Tu Shou" sort="Luo, Tu Shou" uniqKey="Luo T" first="Tu-Shou" last="Luo">Tu-Shou Luo</name>
<name sortKey="Makabe, Akiko" sort="Makabe, Akiko" uniqKey="Makabe A" first="Akiko" last="Makabe">Akiko Makabe</name>
<name sortKey="Yoh, Muneoki" sort="Yoh, Muneoki" uniqKey="Yoh M" first="Muneoki" last="Yoh">Muneoki Yoh</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Ang" sort="Wang, Ang" uniqKey="Wang A" first="Ang" last="Wang">Ang Wang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001742 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001742 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24085637
   |texte=   Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24085637" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020