Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus.

Identifieur interne : 001470 ( Main/Exploration ); précédent : 001469; suivant : 001471

Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus.

Auteurs : Li Xue [États-Unis] ; Haitao Cui [États-Unis] ; Benjamin Buer [États-Unis] ; Vinod Vijayakumar [États-Unis] ; Pierre-Marc Delaux [États-Unis] ; Stefanie Junkermann [États-Unis] ; Marcel Bucher [États-Unis]

Source :

RBID : pubmed:25560877

Descripteurs français

English descriptors

Abstract

Arbuscular mycorrhizal (AM) fungi, in symbiosis with plants, facilitate acquisition of nutrients from the soil to their host. After penetration, intracellular hyphae form fine-branched structures in cortical cells termed arbuscules, representing the major site where bidirectional nutrient exchange takes place between the host plant and fungus. Transcriptional mechanisms underlying this cellular reprogramming are still poorly understood. GRAS proteins are an important family of transcriptional regulators in plants, named after the first three members: GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW. Here, we show that among 45 transcription factors up-regulated in mycorrhizal roots of the legume Lotus japonicus, expression of a unique GRAS protein particularly increases in arbuscule-containing cells under low phosphate conditions and displays a phylogenetic pattern characteristic of symbiotic genes. Allelic rad1 mutants display a strongly reduced number of arbuscules, which undergo accelerated degeneration. In further studies, two RAD1-interacting proteins were identified. One of them is the closest homolog of Medicago truncatula, REDUCED ARBUSCULAR MYCORRHIZATION1 (RAM1), which was reported to regulate a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. As in M. truncatula, the L. japonicus ram1 mutant lines show compromised AM colonization and stunted arbuscules. Our findings provide, to our knowledge, new insight into the transcriptional program underlying the host's response to AM colonization and propose a function of GRAS transcription factors including RAD1 and RAM1 during arbuscule development.

DOI: 10.1104/pp.114.255430
PubMed: 25560877
PubMed Central: PMC4348782


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus.</title>
<author>
<name sortKey="Xue, Li" sort="Xue, Li" uniqKey="Xue L" first="Li" last="Xue">Li Xue</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cui, Haitao" sort="Cui, Haitao" uniqKey="Cui H" first="Haitao" last="Cui">Haitao Cui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Buer, Benjamin" sort="Buer, Benjamin" uniqKey="Buer B" first="Benjamin" last="Buer">Benjamin Buer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vijayakumar, Vinod" sort="Vijayakumar, Vinod" uniqKey="Vijayakumar V" first="Vinod" last="Vijayakumar">Vinod Vijayakumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Delaux, Pierre Marc" sort="Delaux, Pierre Marc" uniqKey="Delaux P" first="Pierre-Marc" last="Delaux">Pierre-Marc Delaux</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Junkermann, Stefanie" sort="Junkermann, Stefanie" uniqKey="Junkermann S" first="Stefanie" last="Junkermann">Stefanie Junkermann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.) m.bucher@uni-koeln.de.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25560877</idno>
<idno type="pmid">25560877</idno>
<idno type="doi">10.1104/pp.114.255430</idno>
<idno type="pmc">PMC4348782</idno>
<idno type="wicri:Area/Main/Corpus">001598</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001598</idno>
<idno type="wicri:Area/Main/Curation">001598</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001598</idno>
<idno type="wicri:Area/Main/Exploration">001598</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus.</title>
<author>
<name sortKey="Xue, Li" sort="Xue, Li" uniqKey="Xue L" first="Li" last="Xue">Li Xue</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cui, Haitao" sort="Cui, Haitao" uniqKey="Cui H" first="Haitao" last="Cui">Haitao Cui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Buer, Benjamin" sort="Buer, Benjamin" uniqKey="Buer B" first="Benjamin" last="Buer">Benjamin Buer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vijayakumar, Vinod" sort="Vijayakumar, Vinod" uniqKey="Vijayakumar V" first="Vinod" last="Vijayakumar">Vinod Vijayakumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Delaux, Pierre Marc" sort="Delaux, Pierre Marc" uniqKey="Delaux P" first="Pierre-Marc" last="Delaux">Pierre-Marc Delaux</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Junkermann, Stefanie" sort="Junkermann, Stefanie" uniqKey="Junkermann S" first="Stefanie" last="Junkermann">Stefanie Junkermann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<affiliation wicri:level="2">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.) m.bucher@uni-koeln.de.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glucuronidase (metabolism)</term>
<term>Lotus (genetics)</term>
<term>Lotus (microbiology)</term>
<term>Mutagenesis, Insertional (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Organ Specificity (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Up-Regulation (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Glucuronidase (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Loteae (génétique)</term>
<term>Loteae (microbiologie)</term>
<term>Mutagenèse par insertion (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation positive (génétique)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Spécificité d'organe (MeSH)</term>
<term>Symbiose (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucuronidase</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lotus</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Loteae</term>
<term>Régulation positive</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Loteae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lotus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Glucuronidase</term>
<term>Mycorhizes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Plant</term>
<term>Mutagenesis, Insertional</term>
<term>Mutation</term>
<term>Organ Specificity</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Protein Binding</term>
<term>Symbiosis</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Gènes de plante</term>
<term>Liaison aux protéines</term>
<term>Mutagenèse par insertion</term>
<term>Mutation</term>
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Spécificité d'organe</term>
<term>Symbiose</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) fungi, in symbiosis with plants, facilitate acquisition of nutrients from the soil to their host. After penetration, intracellular hyphae form fine-branched structures in cortical cells termed arbuscules, representing the major site where bidirectional nutrient exchange takes place between the host plant and fungus. Transcriptional mechanisms underlying this cellular reprogramming are still poorly understood. GRAS proteins are an important family of transcriptional regulators in plants, named after the first three members: GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW. Here, we show that among 45 transcription factors up-regulated in mycorrhizal roots of the legume Lotus japonicus, expression of a unique GRAS protein particularly increases in arbuscule-containing cells under low phosphate conditions and displays a phylogenetic pattern characteristic of symbiotic genes. Allelic rad1 mutants display a strongly reduced number of arbuscules, which undergo accelerated degeneration. In further studies, two RAD1-interacting proteins were identified. One of them is the closest homolog of Medicago truncatula, REDUCED ARBUSCULAR MYCORRHIZATION1 (RAM1), which was reported to regulate a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. As in M. truncatula, the L. japonicus ram1 mutant lines show compromised AM colonization and stunted arbuscules. Our findings provide, to our knowledge, new insight into the transcriptional program underlying the host's response to AM colonization and propose a function of GRAS transcription factors including RAD1 and RAM1 during arbuscule development. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25560877</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>167</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus.</ArticleTitle>
<Pagination>
<MedlinePgn>854-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.114.255430</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) fungi, in symbiosis with plants, facilitate acquisition of nutrients from the soil to their host. After penetration, intracellular hyphae form fine-branched structures in cortical cells termed arbuscules, representing the major site where bidirectional nutrient exchange takes place between the host plant and fungus. Transcriptional mechanisms underlying this cellular reprogramming are still poorly understood. GRAS proteins are an important family of transcriptional regulators in plants, named after the first three members: GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW. Here, we show that among 45 transcription factors up-regulated in mycorrhizal roots of the legume Lotus japonicus, expression of a unique GRAS protein particularly increases in arbuscule-containing cells under low phosphate conditions and displays a phylogenetic pattern characteristic of symbiotic genes. Allelic rad1 mutants display a strongly reduced number of arbuscules, which undergo accelerated degeneration. In further studies, two RAD1-interacting proteins were identified. One of them is the closest homolog of Medicago truncatula, REDUCED ARBUSCULAR MYCORRHIZATION1 (RAM1), which was reported to regulate a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. As in M. truncatula, the L. japonicus ram1 mutant lines show compromised AM colonization and stunted arbuscules. Our findings provide, to our knowledge, new insight into the transcriptional program underlying the host's response to AM colonization and propose a function of GRAS transcription factors including RAD1 and RAM1 during arbuscule development. </AbstractText>
<CopyrightInformation>© 2015 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Haitao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buer</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vijayakumar</LastName>
<ForeName>Vinod</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Delaux</LastName>
<ForeName>Pierre-Marc</ForeName>
<Initials>PM</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Junkermann</LastName>
<ForeName>Stefanie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bucher</LastName>
<ForeName>Marcel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.) m.bucher@uni-koeln.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="Y">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070116" MajorTopicYN="N">Lotus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="N">Mutagenesis, Insertional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25560877</ArticleId>
<ArticleId IdType="pii">pp.114.255430</ArticleId>
<ArticleId IdType="doi">10.1104/pp.114.255430</ArticleId>
<ArticleId IdType="pmc">PMC4348782</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 May;111(5):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23508650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jan;14(1):57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11826299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(4):731-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22014280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D966-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17933783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Feb 18;7(2):164-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E5025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Oct;8(10). pii: e26049. doi: 10.4161/psb.26049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(8):R86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20738864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1786-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):545-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2010;4 Suppl 1:S3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Apr;18(1):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10341448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013;13:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23679580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Mar 15;21(6):1280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11889034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 May 1;17(9):1175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1998 Jul;7(7):879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9691489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):359-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):954-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Feb;73(3):442-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23051146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 3;433(7025):527-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Mar;51(3):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):1157-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21106037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):1990-2010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21571671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):2989-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):836-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23442117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1671-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jul;75(1):117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23627596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):610-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 1;26(5):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Nov;72(3):512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22775306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1647-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Mar;69(5):906-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22077667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Oct;98(4):731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16855013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Oct;24(10):4236-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):351-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):E665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):912-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 26;4:533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24409191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 15;289(5486):1920-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(4):720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22014259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Mar;54(4):519-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Nov 02;1:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(3):510-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21978245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Mar;218(5):683-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14760535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):959-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Oct;15(10):1451-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Apr;11(4):252-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23493145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2023-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2010 Jan;Chapter 19:Unit 19.10.1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20069535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Jan;24(1):130-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24343576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2008 Aug;15(4):227-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 May 15;14(10):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10817761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(2):280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):3122-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 22;109(21):8316-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22566631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2509-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3467-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19106374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Nov;64(3):470-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20804456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Aug 9;86(3):423-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):556-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23136382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb 1;61(3):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jul;10(7):e1004487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25032823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 1;11(23):3194-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9389651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 May 29;26(5):2024-2037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24876250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Xue, Li" sort="Xue, Li" uniqKey="Xue L" first="Li" last="Xue">Li Xue</name>
</region>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<name sortKey="Buer, Benjamin" sort="Buer, Benjamin" uniqKey="Buer B" first="Benjamin" last="Buer">Benjamin Buer</name>
<name sortKey="Cui, Haitao" sort="Cui, Haitao" uniqKey="Cui H" first="Haitao" last="Cui">Haitao Cui</name>
<name sortKey="Delaux, Pierre Marc" sort="Delaux, Pierre Marc" uniqKey="Delaux P" first="Pierre-Marc" last="Delaux">Pierre-Marc Delaux</name>
<name sortKey="Junkermann, Stefanie" sort="Junkermann, Stefanie" uniqKey="Junkermann S" first="Stefanie" last="Junkermann">Stefanie Junkermann</name>
<name sortKey="Vijayakumar, Vinod" sort="Vijayakumar, Vinod" uniqKey="Vijayakumar V" first="Vinod" last="Vijayakumar">Vinod Vijayakumar</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001470 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001470 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25560877
   |texte=   Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25560877" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020