Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae.

Identifieur interne : 001205 ( Main/Exploration ); précédent : 001204; suivant : 001206

Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae.

Auteurs : Alessandra Pepe [Italie] ; Manuela Giovannetti [Italie] ; Cristiana Sbrana [Italie]

Source :

RBID : pubmed:26630971

Descripteurs français

English descriptors

Abstract

Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21% of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9%. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2-7.7, while it ranged from 25.8-48 to 35.6-53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2%). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.

DOI: 10.1007/s00572-015-0671-2
PubMed: 26630971


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae.</title>
<author>
<name sortKey="Pepe, Alessandra" sort="Pepe, Alessandra" uniqKey="Pepe A" first="Alessandra" last="Pepe">Alessandra Pepe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
<orgName type="university">Université de Pise</orgName>
</affiliation>
</author>
<author>
<name sortKey="Giovannetti, Manuela" sort="Giovannetti, Manuela" uniqKey="Giovannetti M" first="Manuela" last="Giovannetti">Manuela Giovannetti</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
<orgName type="university">Université de Pise</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sbrana, Cristiana" sort="Sbrana, Cristiana" uniqKey="Sbrana C" first="Cristiana" last="Sbrana">Cristiana Sbrana</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy. sbrana@ibba.cnr.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Via del Borghetto 80, 56124, Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26630971</idno>
<idno type="pmid">26630971</idno>
<idno type="doi">10.1007/s00572-015-0671-2</idno>
<idno type="wicri:Area/Main/Corpus">001261</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001261</idno>
<idno type="wicri:Area/Main/Curation">001261</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001261</idno>
<idno type="wicri:Area/Main/Exploration">001261</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae.</title>
<author>
<name sortKey="Pepe, Alessandra" sort="Pepe, Alessandra" uniqKey="Pepe A" first="Alessandra" last="Pepe">Alessandra Pepe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
<orgName type="university">Université de Pise</orgName>
</affiliation>
</author>
<author>
<name sortKey="Giovannetti, Manuela" sort="Giovannetti, Manuela" uniqKey="Giovannetti M" first="Manuela" last="Giovannetti">Manuela Giovannetti</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
<orgName type="university">Université de Pise</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sbrana, Cristiana" sort="Sbrana, Cristiana" uniqKey="Sbrana C" first="Cristiana" last="Sbrana">Cristiana Sbrana</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy. sbrana@ibba.cnr.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Via del Borghetto 80, 56124, Pisa</wicri:regionArea>
<placeName>
<settlement type="city">Pise</settlement>
<region nuts="2">Toscane</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glomeromycota (classification)</term>
<term>Glomeromycota (growth & development)</term>
<term>Glomeromycota (physiology)</term>
<term>Hyphae (classification)</term>
<term>Hyphae (genetics)</term>
<term>Hyphae (growth & development)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Plants (microbiology)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glomeromycota (classification)</term>
<term>Glomeromycota (croissance et développement)</term>
<term>Glomeromycota (physiologie)</term>
<term>Hyphae (classification)</term>
<term>Hyphae (croissance et développement)</term>
<term>Hyphae (génétique)</term>
<term>Mycorhizes (classification)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>Plantes (microbiologie)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Glomeromycota</term>
<term>Hyphae</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Glomeromycota</term>
<term>Hyphae</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Glomeromycota</term>
<term>Hyphae</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Physiological Phenomena</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Glomeromycota</term>
<term>Hyphae</term>
<term>Mycorhizes</term>
<term>Phénomènes physiologiques des plantes</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21% of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9%. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2-7.7, while it ranged from 25.8-48 to 35.6-53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2%). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26630971</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae.</ArticleTitle>
<Pagination>
<MedlinePgn>325-32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-015-0671-2</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21% of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9%. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2-7.7, while it ranged from 25.8-48 to 35.6-53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2%). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pepe</LastName>
<ForeName>Alessandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giovannetti</LastName>
<ForeName>Manuela</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sbrana</LastName>
<ForeName>Cristiana</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8058-8566</Identifier>
<AffiliationInfo>
<Affiliation>CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy. sbrana@ibba.cnr.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="N">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">Extraradical networks</Keyword>
<Keyword MajorTopicYN="N">Funneliformis coronatus</Keyword>
<Keyword MajorTopicYN="N">Hyphal anastomosis</Keyword>
<Keyword MajorTopicYN="N">Hyphal incompatibility</Keyword>
<Keyword MajorTopicYN="N">Mycelial interconnectedness</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26630971</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-015-0671-2</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-015-0671-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Fungal Genet Biol. 2006 Feb;43(2):102-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16386437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(2):347-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1485-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25297948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 May-Jun;105(3):589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23233505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Dec;65(12):5571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10584019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):924-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):616-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Feb;42(2):130-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15670711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2011 Mar-Apr;103(2):307-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21139032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 May;147(1):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Aug;21(6):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Feb;2(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 May;237(5):1267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23361889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21166810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(2):185-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(4):890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 30;394(6692):431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9697763</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Toscane</li>
</region>
<settlement>
<li>Pise</li>
</settlement>
<orgName>
<li>Université de Pise</li>
</orgName>
</list>
<tree>
<country name="Italie">
<region name="Toscane">
<name sortKey="Pepe, Alessandra" sort="Pepe, Alessandra" uniqKey="Pepe A" first="Alessandra" last="Pepe">Alessandra Pepe</name>
</region>
<name sortKey="Giovannetti, Manuela" sort="Giovannetti, Manuela" uniqKey="Giovannetti M" first="Manuela" last="Giovannetti">Manuela Giovannetti</name>
<name sortKey="Sbrana, Cristiana" sort="Sbrana, Cristiana" uniqKey="Sbrana C" first="Cristiana" last="Sbrana">Cristiana Sbrana</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001205 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001205 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26630971
   |texte=   Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26630971" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020