Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment.

Identifieur interne : 000E52 ( Main/Exploration ); précédent : 000E51; suivant : 000E53

Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment.

Auteurs : Wentao Hu [République populaire de Chine] ; Haoqiang Zhang [République populaire de Chine] ; Hui Chen [République populaire de Chine] ; Ming Tang [République populaire de Chine]

Source :

RBID : pubmed:28185001

Descripteurs français

English descriptors

Abstract

Arbuscular mycorrhizal (AM) fungi can assist their hosts to cope with water stress and other abiotic stresses in different ways. In order to test whether AM plants have a greater capacity than control plants to cope with water stress, we investigated the water status and photosynthetic capacity of Lycium barbarum colonized or not by the AM fungus Rhizophagus irregularis under three water conditions during a hot summer. Sugar levels and transcriptional responses of both plant and AM fungus aquaporin genes in roots were analyzed. Compared with control plants, AM plants increased transpiration rate and stomatal conductance but decreased leaf relative water content under moderate water stress. Severe water stress, however, did not inhibit the quantum yield of PSII photochemistry in AM plants versus control plants. AM plants had higher expression levels of plasma membrane intrinsic proteins or tonoplast intrinsic proteins and Rir-AQP2 and lower leaf temperature than control plants under dry-hot stress. Additionally, AM plant sugar levels under normal water conditions were similar to those of control plants under moderate water stress, but sugar levels of AM plants especially increased with severe water stress. When these aspects of performance of AM and control plants under different water conditions are compared overall, AM plants displayed an obvious superiority over control plants at coping with moderate water stress in the hot environment; AM plants maintained normal photochemical processes under severe water stress, while sugar levels were affected strongly.

DOI: 10.1007/s00572-017-0765-0
PubMed: 28185001


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment.</title>
<author>
<name sortKey="Hu, Wentao" sort="Hu, Wentao" uniqKey="Hu W" first="Wentao" last="Hu">Wentao Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Haoqiang" sort="Zhang, Haoqiang" uniqKey="Zhang H" first="Haoqiang" last="Zhang">Haoqiang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hui" sort="Chen, Hui" uniqKey="Chen H" first="Hui" last="Chen">Hui Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China. tangm@nwsuaf.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28185001</idno>
<idno type="pmid">28185001</idno>
<idno type="doi">10.1007/s00572-017-0765-0</idno>
<idno type="wicri:Area/Main/Corpus">000D62</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D62</idno>
<idno type="wicri:Area/Main/Curation">000D62</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D62</idno>
<idno type="wicri:Area/Main/Exploration">000D62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment.</title>
<author>
<name sortKey="Hu, Wentao" sort="Hu, Wentao" uniqKey="Hu W" first="Wentao" last="Hu">Wentao Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Haoqiang" sort="Zhang, Haoqiang" uniqKey="Zhang H" first="Haoqiang" last="Zhang">Haoqiang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hui" sort="Chen, Hui" uniqKey="Chen H" first="Hui" last="Chen">Hui Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China. tangm@nwsuaf.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100</wicri:regionArea>
<wicri:noRegion>712100</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aquaporins (physiology)</term>
<term>Dehydration (MeSH)</term>
<term>Glomeromycota (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Lycium (microbiology)</term>
<term>Lycium (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Proteins (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Water (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aquaporines (physiologie)</term>
<term>Déshydratation (MeSH)</term>
<term>Eau (physiologie)</term>
<term>Glomeromycota (MeSH)</term>
<term>Lycium (microbiologie)</term>
<term>Lycium (physiologie)</term>
<term>Mycorhizes (physiologie)</term>
<term>Protéines végétales (physiologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (physiologie)</term>
<term>Température élevée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Aquaporins</term>
<term>Plant Proteins</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lycium</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycium</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Aquaporines</term>
<term>Eau</term>
<term>Lycium</term>
<term>Mycorhizes</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lycium</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dehydration</term>
<term>Glomeromycota</term>
<term>Hot Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Déshydratation</term>
<term>Glomeromycota</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) fungi can assist their hosts to cope with water stress and other abiotic stresses in different ways. In order to test whether AM plants have a greater capacity than control plants to cope with water stress, we investigated the water status and photosynthetic capacity of Lycium barbarum colonized or not by the AM fungus Rhizophagus irregularis under three water conditions during a hot summer. Sugar levels and transcriptional responses of both plant and AM fungus aquaporin genes in roots were analyzed. Compared with control plants, AM plants increased transpiration rate and stomatal conductance but decreased leaf relative water content under moderate water stress. Severe water stress, however, did not inhibit the quantum yield of PSII photochemistry in AM plants versus control plants. AM plants had higher expression levels of plasma membrane intrinsic proteins or tonoplast intrinsic proteins and Rir-AQP2 and lower leaf temperature than control plants under dry-hot stress. Additionally, AM plant sugar levels under normal water conditions were similar to those of control plants under moderate water stress, but sugar levels of AM plants especially increased with severe water stress. When these aspects of performance of AM and control plants under different water conditions are compared overall, AM plants displayed an obvious superiority over control plants at coping with moderate water stress in the hot environment; AM plants maintained normal photochemical processes under severe water stress, while sugar levels were affected strongly.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28185001</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>01</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment.</ArticleTitle>
<Pagination>
<MedlinePgn>451-463</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-017-0765-0</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) fungi can assist their hosts to cope with water stress and other abiotic stresses in different ways. In order to test whether AM plants have a greater capacity than control plants to cope with water stress, we investigated the water status and photosynthetic capacity of Lycium barbarum colonized or not by the AM fungus Rhizophagus irregularis under three water conditions during a hot summer. Sugar levels and transcriptional responses of both plant and AM fungus aquaporin genes in roots were analyzed. Compared with control plants, AM plants increased transpiration rate and stomatal conductance but decreased leaf relative water content under moderate water stress. Severe water stress, however, did not inhibit the quantum yield of PSII photochemistry in AM plants versus control plants. AM plants had higher expression levels of plasma membrane intrinsic proteins or tonoplast intrinsic proteins and Rir-AQP2 and lower leaf temperature than control plants under dry-hot stress. Additionally, AM plant sugar levels under normal water conditions were similar to those of control plants under moderate water stress, but sugar levels of AM plants especially increased with severe water stress. When these aspects of performance of AM and control plants under different water conditions are compared overall, AM plants displayed an obvious superiority over control plants at coping with moderate water stress in the hot environment; AM plants maintained normal photochemical processes under severe water stress, while sugar levels were affected strongly.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Wentao</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Haoqiang</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China. tangm@nwsuaf.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020346">Aquaporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020346" MajorTopicYN="N">Aquaporins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="Y">Dehydration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032305" MajorTopicYN="N">Lycium</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aquaporin</Keyword>
<Keyword MajorTopicYN="N">Arbuscular mycorrhizal fungus</Keyword>
<Keyword MajorTopicYN="N">Lycium barbarum</Keyword>
<Keyword MajorTopicYN="N">Sugar</Keyword>
<Keyword MajorTopicYN="N">Water stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28185001</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-017-0765-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-017-0765-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2005 Oct;25(10):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 23;10(12):e0145726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26698576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2008 Oct-Dec;98(1-3):541-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18649006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Aug;38(8):1613-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25630435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Apr;122(4):1025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10759498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Nov;24(8):595-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24743902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Aug 1;185:75-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26291919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Apr;23(4):1352-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21505066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 22;437(7058):529-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Mar;163(4):417-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(403):1743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(4):551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Apr 15;169(6):577-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22305050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Nov;15(8):596-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Feb;60(3):389-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16514562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Sep;18(6-7):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18584217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Nov;26(8):879-893</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27456042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Apr;27(4):349-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24593244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(2):617-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1954 Jul;57(3):508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13181867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jul;17(7):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22513109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Nov;161(11):1189-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Aug;36(8):942-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27468738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Jul 15;168(11):1256-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21489650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2013 Jan;20(1):163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22669564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Jun;27(6):793-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Dec;13(6):309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:595-624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hu, Wentao" sort="Hu, Wentao" uniqKey="Hu W" first="Wentao" last="Hu">Wentao Hu</name>
</noRegion>
<name sortKey="Chen, Hui" sort="Chen, Hui" uniqKey="Chen H" first="Hui" last="Chen">Hui Chen</name>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
<name sortKey="Zhang, Haoqiang" sort="Zhang, Haoqiang" uniqKey="Zhang H" first="Haoqiang" last="Zhang">Haoqiang Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28185001
   |texte=   Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28185001" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020