Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Orchid diversity: Spatial and climatic patterns from herbarium records.

Identifieur interne : 000846 ( Main/Exploration ); précédent : 000845; suivant : 000847

Orchid diversity: Spatial and climatic patterns from herbarium records.

Auteurs : Anne C. Gaskett ; Rachael V. Gallagher

Source :

RBID : pubmed:30519440

Abstract

Aim

We test for spatial and climatic patterns of diversification in the Orchidaceae, an angiosperm family characterized by high levels of species diversity and rarity. Globally, does orchid diversity correlate with land area? In Australia, does diversity correlate with herbarium collecting effort, range size, or climate niche breadth? Where are Australia's orchids distributed spatially, in protected areas, and in climate space?

Location

Global, then Australia.

Methods

We compared orchid diversity with land area for continents and recognized orchid diversity hotspots. Then, we used cleaned herbarium records to compare collecting effort (for Australian Orchidaceae vs. all other plant families, and also among orchid genera). Spatial and climate distributions were mapped to determine orchids' coverage in the protected area network, range sizes, and niche breadths.

Results

Globally, orchid diversity does not correlate with land area (depauperate regions are the subantarctic: 10 species, and northern North America: 394 species). Australian herbarium records and collecting effort generally reflect orchid species diversity (1,583 spp.), range sizes, and niche breadths. Orchids are restricted to 13% of Australia's landmass with 211 species absent from any protected areas. Species richness is the greatest in three biomes with high general biodiversity: Temperate (especially southwest and southeast Australia), Tropical, and Subtropical (coastal northern Queensland). Absence from the Desert is consistent with our realized climate niche-orchids avoid high temperature/low rainfall environments. Orchids have narrower range sizes than nonorchid species. Highly diverse orchid genera have narrower rainfall breadths than less diverse genera.

Main conclusions

Herbarium data are adequate for testing hypotheses about Australian orchids. Distribution is likely driven by environmental factors. In contrast, diversification did not correlate with increases in range size, rainfall, or temperature breadths, suggesting speciation does not occur via invasion and local adaptation to new habitats. Instead, diversification may rely on access to extensive obligate symbioses with mycorrhizae and/or pollinators.


DOI: 10.1002/ece3.4598
PubMed: 30519440
PubMed Central: PMC6262934


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Orchid diversity: Spatial and climatic patterns from herbarium records.</title>
<author>
<name sortKey="Gaskett, Anne C" sort="Gaskett, Anne C" uniqKey="Gaskett A" first="Anne C" last="Gaskett">Anne C. Gaskett</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences The University of Auckland Auckland New Zealand.</nlm:affiliation>
<wicri:noCountry code="no comma">School of Biological Sciences The University of Auckland Auckland New Zealand.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Rachael V" sort="Gallagher, Rachael V" uniqKey="Gallagher R" first="Rachael V" last="Gallagher">Rachael V. Gallagher</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences Macquarie University Sydney New South Wales Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biological Sciences Macquarie University Sydney New South Wales Australia.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30519440</idno>
<idno type="pmid">30519440</idno>
<idno type="doi">10.1002/ece3.4598</idno>
<idno type="pmc">PMC6262934</idno>
<idno type="wicri:Area/Main/Corpus">000646</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000646</idno>
<idno type="wicri:Area/Main/Curation">000646</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000646</idno>
<idno type="wicri:Area/Main/Exploration">000646</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Orchid diversity: Spatial and climatic patterns from herbarium records.</title>
<author>
<name sortKey="Gaskett, Anne C" sort="Gaskett, Anne C" uniqKey="Gaskett A" first="Anne C" last="Gaskett">Anne C. Gaskett</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences The University of Auckland Auckland New Zealand.</nlm:affiliation>
<wicri:noCountry code="no comma">School of Biological Sciences The University of Auckland Auckland New Zealand.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Rachael V" sort="Gallagher, Rachael V" uniqKey="Gallagher R" first="Rachael V" last="Gallagher">Rachael V. Gallagher</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences Macquarie University Sydney New South Wales Australia.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Biological Sciences Macquarie University Sydney New South Wales Australia.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Aim</b>
</p>
<p>We test for spatial and climatic patterns of diversification in the Orchidaceae, an angiosperm family characterized by high levels of species diversity and rarity. Globally, does orchid diversity correlate with land area? In Australia, does diversity correlate with herbarium collecting effort, range size, or climate niche breadth? Where are Australia's orchids distributed spatially, in protected areas, and in climate space?</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Location</b>
</p>
<p>Global, then Australia.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Methods</b>
</p>
<p>We compared orchid diversity with land area for continents and recognized orchid diversity hotspots. Then, we used cleaned herbarium records to compare collecting effort (for Australian Orchidaceae vs. all other plant families, and also among orchid genera). Spatial and climate distributions were mapped to determine orchids' coverage in the protected area network, range sizes, and niche breadths.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Results</b>
</p>
<p>Globally, orchid diversity does not correlate with land area (depauperate regions are the subantarctic: 10 species, and northern North America: 394 species). Australian herbarium records and collecting effort generally reflect orchid species diversity (1,583 spp.), range sizes, and niche breadths. Orchids are restricted to 13% of Australia's landmass with 211 species absent from any protected areas. Species richness is the greatest in three biomes with high general biodiversity: Temperate (especially southwest and southeast Australia), Tropical, and Subtropical (coastal northern Queensland). Absence from the Desert is consistent with our realized climate niche-orchids avoid high temperature/low rainfall environments. Orchids have narrower range sizes than nonorchid species. Highly diverse orchid genera have narrower rainfall breadths than less diverse genera.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Main conclusions</b>
</p>
<p>Herbarium data are adequate for testing hypotheses about Australian orchids. Distribution is likely driven by environmental factors. In contrast, diversification did not correlate with increases in range size, rainfall, or temperature breadths, suggesting speciation does not occur via invasion and local adaptation to new habitats. Instead, diversification may rely on access to extensive obligate symbioses with mycorrhizae and/or pollinators.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30519440</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Orchid diversity: Spatial and climatic patterns from herbarium records.</ArticleTitle>
<Pagination>
<MedlinePgn>11235-11245</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.4598</ELocationID>
<Abstract>
<AbstractText Label="Aim" NlmCategory="UNASSIGNED">We test for spatial and climatic patterns of diversification in the Orchidaceae, an angiosperm family characterized by high levels of species diversity and rarity. Globally, does orchid diversity correlate with land area? In Australia, does diversity correlate with herbarium collecting effort, range size, or climate niche breadth? Where are Australia's orchids distributed spatially, in protected areas, and in climate space?</AbstractText>
<AbstractText Label="Location" NlmCategory="UNASSIGNED">Global, then Australia.</AbstractText>
<AbstractText Label="Methods" NlmCategory="UNASSIGNED">We compared orchid diversity with land area for continents and recognized orchid diversity hotspots. Then, we used cleaned herbarium records to compare collecting effort (for Australian Orchidaceae vs. all other plant families, and also among orchid genera). Spatial and climate distributions were mapped to determine orchids' coverage in the protected area network, range sizes, and niche breadths.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">Globally, orchid diversity does not correlate with land area (depauperate regions are the subantarctic: 10 species, and northern North America: 394 species). Australian herbarium records and collecting effort generally reflect orchid species diversity (1,583 spp.), range sizes, and niche breadths. Orchids are restricted to 13% of Australia's landmass with 211 species absent from any protected areas. Species richness is the greatest in three biomes with high general biodiversity: Temperate (especially southwest and southeast Australia), Tropical, and Subtropical (coastal northern Queensland). Absence from the Desert is consistent with our realized climate niche-orchids avoid high temperature/low rainfall environments. Orchids have narrower range sizes than nonorchid species. Highly diverse orchid genera have narrower rainfall breadths than less diverse genera.</AbstractText>
<AbstractText Label="Main conclusions" NlmCategory="UNASSIGNED">Herbarium data are adequate for testing hypotheses about Australian orchids. Distribution is likely driven by environmental factors. In contrast, diversification did not correlate with increases in range size, rainfall, or temperature breadths, suggesting speciation does not occur via invasion and local adaptation to new habitats. Instead, diversification may rely on access to extensive obligate symbioses with mycorrhizae and/or pollinators.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gaskett</LastName>
<ForeName>Anne C</ForeName>
<Initials>AC</Initials>
<Identifier Source="ORCID">0000-0002-7659-9537</Identifier>
<AffiliationInfo>
<Affiliation>School of Biological Sciences The University of Auckland Auckland New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gallagher</LastName>
<ForeName>Rachael V</ForeName>
<Initials>RV</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences Macquarie University Sydney New South Wales Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Australian Virtual Herbarium</Keyword>
<Keyword MajorTopicYN="N">Orchidaceae</Keyword>
<Keyword MajorTopicYN="N">biogeography</Keyword>
<Keyword MajorTopicYN="N">collecting effort</Keyword>
<Keyword MajorTopicYN="N">natural history collections</Keyword>
<Keyword MajorTopicYN="N">niche breadth</Keyword>
<Keyword MajorTopicYN="N">protected areas</Keyword>
<Keyword MajorTopicYN="N">species richness</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30519440</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.4598</ArticleId>
<ArticleId IdType="pii">ECE34598</ArticleId>
<ArticleId IdType="pmc">PMC6262934</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1551-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Oct;110(5):953-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22851311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2017 Jul;32(7):531-546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28465044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 May;206(3):1127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25614926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Jan;113(2):277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24107684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Mar;113(4):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24366109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Feb 12;365(1539):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jan;14(1):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Aug;104(3):543-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Dec;45(8):1837-1848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2011 Mar;124(2):289-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Nov;14(11):590-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19733499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 24;403(6772):853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10706275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Jan;113(2):341-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24052555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jun;111(6):1233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2001 Oct;88(10):1903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21669623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Sep;116(3):413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26105186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2015 Jan;28(1):117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25382492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Apr 22;275(1637):987-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jul;207(2):377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25521237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2011 Feb;86(1):33-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2018 Nov 30;122(6):947-959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29897399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 22;428(6985):821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Aug;104(3):447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19398445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2015 Sep 7;282(1814):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26311671</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Gallagher, Rachael V" sort="Gallagher, Rachael V" uniqKey="Gallagher R" first="Rachael V" last="Gallagher">Rachael V. Gallagher</name>
<name sortKey="Gaskett, Anne C" sort="Gaskett, Anne C" uniqKey="Gaskett A" first="Anne C" last="Gaskett">Anne C. Gaskett</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000846 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000846 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30519440
   |texte=   Orchid diversity: Spatial and climatic patterns from herbarium records.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30519440" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020