Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress.

Identifieur interne : 000663 ( Main/Exploration ); précédent : 000662; suivant : 000664

Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress.

Auteurs : Sonal Mathur [Inde] ; Rupal Singh Tomar [Inde] ; Anjana Jajoo [Inde]

Source :

RBID : pubmed:29982909

Descripteurs français

English descriptors

Abstract

Drought stress (DS) is amongst one of the abiotic factors affecting plant growth by limiting productivity of crops by inhibiting photosynthesis. Damage due to DS and its protection by Arbuscular Mycorrhizal fungi (AMF) was studied on photosynthetic apparatus of wheat (Triticum aestivum) plants in pot experiments. DS was maintained by limiting irrigation to the drought stressed (DS) and AMF + DS plants. Relative Water content (RWC) was measured for leaf as well as soil to ensure drought conditions. DS plants had minimum RWC for both leaf and soil. AMF plants showed increased RWC both for leaf and soil indicating that AMF hyphae penetrated deep into the soil and provided moisture to the plants. In Chl a fluorescence induction curve (OJIP), a declined J-I and I-P phase was observed in DS plants. Efficacy of primary photochemistry declined in DS plants as result of DS, while AMF plants showed maximum photochemistry. DS leads to declined quantum efficiency of PSI and PSII in DS plants while it was restored in AMF + DS plants. Electron transport (ETRI and ETRII) decreased while quantum yield of non-photochemical quenching Y(NPQ) increased as a result of drought stress. CEF around PSI increased in DS-stressed plants. Efficient PSI complexes decreased in DS plants while in case of AMF plants PSI complexes were able to perform PSI photochemistry significantly. Thus, it is concluded that drought stress-induced damage to the structure and function of PSII and PSI was alleviated by AMF colonization.

DOI: 10.1007/s11120-018-0538-4
PubMed: 29982909


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress.</title>
<author>
<name sortKey="Mathur, Sonal" sort="Mathur, Sonal" uniqKey="Mathur S" first="Sonal" last="Mathur">Sonal Mathur</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Life Science, Devi Ahilya University, Indore, 452017</wicri:regionArea>
<wicri:noRegion>452017</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomar, Rupal Singh" sort="Tomar, Rupal Singh" uniqKey="Tomar R" first="Rupal Singh" last="Tomar">Rupal Singh Tomar</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Life Science, Devi Ahilya University, Indore, 452017</wicri:regionArea>
<wicri:noRegion>452017</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jajoo, Anjana" sort="Jajoo, Anjana" uniqKey="Jajoo A" first="Anjana" last="Jajoo">Anjana Jajoo</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India. anjanajajoo@hotmail.com.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Life Science, Devi Ahilya University, Indore, 452017</wicri:regionArea>
<wicri:noRegion>452017</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:29982909</idno>
<idno type="pmid">29982909</idno>
<idno type="doi">10.1007/s11120-018-0538-4</idno>
<idno type="wicri:Area/Main/Corpus">000814</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000814</idno>
<idno type="wicri:Area/Main/Curation">000814</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000814</idno>
<idno type="wicri:Area/Main/Exploration">000814</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress.</title>
<author>
<name sortKey="Mathur, Sonal" sort="Mathur, Sonal" uniqKey="Mathur S" first="Sonal" last="Mathur">Sonal Mathur</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Life Science, Devi Ahilya University, Indore, 452017</wicri:regionArea>
<wicri:noRegion>452017</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomar, Rupal Singh" sort="Tomar, Rupal Singh" uniqKey="Tomar R" first="Rupal Singh" last="Tomar">Rupal Singh Tomar</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Life Science, Devi Ahilya University, Indore, 452017</wicri:regionArea>
<wicri:noRegion>452017</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jajoo, Anjana" sort="Jajoo, Anjana" uniqKey="Jajoo A" first="Anjana" last="Jajoo">Anjana Jajoo</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India. anjanajajoo@hotmail.com.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Life Science, Devi Ahilya University, Indore, 452017</wicri:regionArea>
<wicri:noRegion>452017</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Photosynthesis research</title>
<idno type="eISSN">1573-5079</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Electron Transport (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Photochemistry (MeSH)</term>
<term>Photosynthesis (physiology)</term>
<term>Triticum (metabolism)</term>
<term>Triticum (physiology)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Eau (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Photochimie (MeSH)</term>
<term>Photosynthèse (physiologie)</term>
<term>Sécheresses (MeSH)</term>
<term>Transport d'électrons (physiologie)</term>
<term>Triticum (métabolisme)</term>
<term>Triticum (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
<term>Photosynthèse</term>
<term>Transport d'électrons</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Electron Transport</term>
<term>Mycorrhizae</term>
<term>Photosynthesis</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Photochemistry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Photochimie</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought stress (DS) is amongst one of the abiotic factors affecting plant growth by limiting productivity of crops by inhibiting photosynthesis. Damage due to DS and its protection by Arbuscular Mycorrhizal fungi (AMF) was studied on photosynthetic apparatus of wheat (Triticum aestivum) plants in pot experiments. DS was maintained by limiting irrigation to the drought stressed (DS) and AMF + DS plants. Relative Water content (RWC) was measured for leaf as well as soil to ensure drought conditions. DS plants had minimum RWC for both leaf and soil. AMF plants showed increased RWC both for leaf and soil indicating that AMF hyphae penetrated deep into the soil and provided moisture to the plants. In Chl a fluorescence induction curve (OJIP), a declined J-I and I-P phase was observed in DS plants. Efficacy of primary photochemistry declined in DS plants as result of DS, while AMF plants showed maximum photochemistry. DS leads to declined quantum efficiency of PSI and PSII in DS plants while it was restored in AMF + DS plants. Electron transport (ETRI and ETRII) decreased while quantum yield of non-photochemical quenching Y(NPQ) increased as a result of drought stress. CEF around PSI increased in DS-stressed plants. Efficient PSI complexes decreased in DS plants while in case of AMF plants PSI complexes were able to perform PSI photochemistry significantly. Thus, it is concluded that drought stress-induced damage to the structure and function of PSII and PSI was alleviated by AMF colonization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29982909</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5079</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>139</Volume>
<Issue>1-3</Issue>
<PubDate>
<Year>2019</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Photosynthesis research</Title>
<ISOAbbreviation>Photosynth Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress.</ArticleTitle>
<Pagination>
<MedlinePgn>227-238</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11120-018-0538-4</ELocationID>
<Abstract>
<AbstractText>Drought stress (DS) is amongst one of the abiotic factors affecting plant growth by limiting productivity of crops by inhibiting photosynthesis. Damage due to DS and its protection by Arbuscular Mycorrhizal fungi (AMF) was studied on photosynthetic apparatus of wheat (Triticum aestivum) plants in pot experiments. DS was maintained by limiting irrigation to the drought stressed (DS) and AMF + DS plants. Relative Water content (RWC) was measured for leaf as well as soil to ensure drought conditions. DS plants had minimum RWC for both leaf and soil. AMF plants showed increased RWC both for leaf and soil indicating that AMF hyphae penetrated deep into the soil and provided moisture to the plants. In Chl a fluorescence induction curve (OJIP), a declined J-I and I-P phase was observed in DS plants. Efficacy of primary photochemistry declined in DS plants as result of DS, while AMF plants showed maximum photochemistry. DS leads to declined quantum efficiency of PSI and PSII in DS plants while it was restored in AMF + DS plants. Electron transport (ETRI and ETRII) decreased while quantum yield of non-photochemical quenching Y(NPQ) increased as a result of drought stress. CEF around PSI increased in DS-stressed plants. Efficient PSI complexes decreased in DS plants while in case of AMF plants PSI complexes were able to perform PSI photochemistry significantly. Thus, it is concluded that drought stress-induced damage to the structure and function of PSII and PSI was alleviated by AMF colonization.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mathur</LastName>
<ForeName>Sonal</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tomar</LastName>
<ForeName>Rupal Singh</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jajoo</LastName>
<ForeName>Anjana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science, Devi Ahilya University, Indore, 452017, India. anjanajajoo@hotmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Photosynth Res</MedlineTA>
<NlmUniqueID>100954728</NlmUniqueID>
<ISSNLinking>0166-8595</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010777" MajorTopicYN="N">Photochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular Mycorrhizal fungi (AMF)</Keyword>
<Keyword MajorTopicYN="N">Drought</Keyword>
<Keyword MajorTopicYN="N">Photosynthesis</Keyword>
<Keyword MajorTopicYN="N">Photosystem I</Keyword>
<Keyword MajorTopicYN="N">Photosystem II</Keyword>
<Keyword MajorTopicYN="N">Wheat</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29982909</ArticleId>
<ArticleId IdType="doi">10.1007/s11120-018-0538-4</ArticleId>
<ArticleId IdType="pii">10.1007/s11120-018-0538-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2000 Feb;41(2):138-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10795307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Dec;13(6):309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(403):1743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Apr;46(4):629-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Aug;47(8):1146-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16854937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Oct;164(10):1289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Apr;1767(4):272-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17408588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Jan;10(1):108-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Nov;51(11):1922-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2011 Jan;13(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Jun;52(6):1042-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2012 Mar;144(3):277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22121914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 May;54:78-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2013 Nov;117(1-3):529-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2014 Aug;137:107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24508481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Aug;55(8):1395-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24793748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2014 Aug;81:16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24811616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Sep;38(9):1699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2015 Aug;125(1-2):151-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25648638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2015 Dec;122:31-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26186727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Oct 27;6:923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jan 06;6:1189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26779223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 11;7:644</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2017 Apr;132(1):13-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27815801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Feb 08;7:42335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28176859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Jul;27(5):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28317065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 07;8:931</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28638391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2018 Mar;180:149-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29425887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saudi J Biol Sci. 2018 Dec;25(8):1772-1780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30591799</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Mathur, Sonal" sort="Mathur, Sonal" uniqKey="Mathur S" first="Sonal" last="Mathur">Sonal Mathur</name>
</noRegion>
<name sortKey="Jajoo, Anjana" sort="Jajoo, Anjana" uniqKey="Jajoo A" first="Anjana" last="Jajoo">Anjana Jajoo</name>
<name sortKey="Tomar, Rupal Singh" sort="Tomar, Rupal Singh" uniqKey="Tomar R" first="Rupal Singh" last="Tomar">Rupal Singh Tomar</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000663 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000663 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29982909
   |texte=   Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29982909" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020