Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought.

Identifieur interne : 000131 ( Main/Exploration ); précédent : 000130; suivant : 000132

Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought.

Auteurs : Anupol Chareesri [Pays-Bas] ; Gerlinde B. De Deyn [Pays-Bas] ; Lidiya Sergeeva [Pays-Bas] ; Anan Polthanee [Thaïlande] ; Thomas W. Kuyper [Pays-Bas]

Source :

RBID : pubmed:32296945

Descripteurs français

English descriptors

Abstract

Drought reduces the availability of soil water and the mobility of nutrients, thereby limiting the growth and productivity of rice. Under drought, arbuscular mycorrhizal fungi (AMF) increase P uptake and sustain rice growth. However, we lack knowledge of how the AMF symbiosis contributes to drought tolerance of rice. In the greenhouse, we investigated mechanisms of AMF symbiosis that confer drought tolerance, such as enhanced nutrient uptake, stomatal conductance, chlorophyll fluorescence, and hormonal balance (abscisic acid (ABA) and indole acetic acid (IAA)). Two greenhouse pot experiments comprised three factors in a full factorial design with two AMF treatments (low- and high-AMF colonization), two water treatments (well-watered and drought), and three rice varieties. Soil water potential was maintained at 0 kPa in the well-watered treatment. In the drought treatment, we reduced soil water potential to - 40 kPa in experiment 1 (Expt 1) and to - 80 kPa in experiment 2 (Expt 2). Drought reduced shoot and root dry biomass and grain yield of rice in both experiments. The reduction of grain yield was less with higher AMF colonization. Plants with higher AMF colonization showed higher leaf P concentrations than plants with lower colonization in Expt 1, but not in Expt 2. Plants with higher AMF colonization exhibited higher stomatal conductance and chlorophyll fluorescence than plants with lower colonization, especially under drought. Drought increased the levels of ABA and IAA, and AMF colonization also resulted in higher levels of IAA. The results suggest both nutrient-driven and plant hormone-driven pathways through which AMF confer drought tolerance to rice.

DOI: 10.1007/s00572-020-00953-z
PubMed: 32296945
PubMed Central: PMC7228911


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought.</title>
<author>
<name sortKey="Chareesri, Anupol" sort="Chareesri, Anupol" uniqKey="Chareesri A" first="Anupol" last="Chareesri">Anupol Chareesri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands. a.chareesri@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Deyn, Gerlinde B" sort="De Deyn, Gerlinde B" uniqKey="De Deyn G" first="Gerlinde B" last="De Deyn">Gerlinde B. De Deyn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sergeeva, Lidiya" sort="Sergeeva, Lidiya" uniqKey="Sergeeva L" first="Lidiya" last="Sergeeva">Lidiya Sergeeva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Plant Physiology, Wageningen University & Research, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Polthanee, Anan" sort="Polthanee, Anan" uniqKey="Polthanee A" first="Anan" last="Polthanee">Anan Polthanee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen</wicri:regionArea>
<wicri:noRegion>Khon Kaen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuyper, Thomas W" sort="Kuyper, Thomas W" uniqKey="Kuyper T" first="Thomas W" last="Kuyper">Thomas W. Kuyper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32296945</idno>
<idno type="pmid">32296945</idno>
<idno type="doi">10.1007/s00572-020-00953-z</idno>
<idno type="pmc">PMC7228911</idno>
<idno type="wicri:Area/Main/Corpus">000117</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000117</idno>
<idno type="wicri:Area/Main/Curation">000117</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000117</idno>
<idno type="wicri:Area/Main/Exploration">000117</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought.</title>
<author>
<name sortKey="Chareesri, Anupol" sort="Chareesri, Anupol" uniqKey="Chareesri A" first="Anupol" last="Chareesri">Anupol Chareesri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands. a.chareesri@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Deyn, Gerlinde B" sort="De Deyn, Gerlinde B" uniqKey="De Deyn G" first="Gerlinde B" last="De Deyn">Gerlinde B. De Deyn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sergeeva, Lidiya" sort="Sergeeva, Lidiya" uniqKey="Sergeeva L" first="Lidiya" last="Sergeeva">Lidiya Sergeeva</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Plant Physiology, Wageningen University & Research, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Polthanee, Anan" sort="Polthanee, Anan" uniqKey="Polthanee A" first="Anan" last="Polthanee">Anan Polthanee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen</wicri:regionArea>
<wicri:noRegion>Khon Kaen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuyper, Thomas W" sort="Kuyper, Thomas W" uniqKey="Kuyper T" first="Thomas W" last="Kuyper">Thomas W. Kuyper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen</wicri:regionArea>
<wicri:noRegion>Wageningen</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Oryza (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Plant Roots (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomasse (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Mycorhizes (MeSH)</term>
<term>Oryza (MeSH)</term>
<term>Racines de plante (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Droughts</term>
<term>Mycorrhizae</term>
<term>Oryza</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Feuilles de plante</term>
<term>Mycorhizes</term>
<term>Oryza</term>
<term>Racines de plante</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Drought reduces the availability of soil water and the mobility of nutrients, thereby limiting the growth and productivity of rice. Under drought, arbuscular mycorrhizal fungi (AMF) increase P uptake and sustain rice growth. However, we lack knowledge of how the AMF symbiosis contributes to drought tolerance of rice. In the greenhouse, we investigated mechanisms of AMF symbiosis that confer drought tolerance, such as enhanced nutrient uptake, stomatal conductance, chlorophyll fluorescence, and hormonal balance (abscisic acid (ABA) and indole acetic acid (IAA)). Two greenhouse pot experiments comprised three factors in a full factorial design with two AMF treatments (low- and high-AMF colonization), two water treatments (well-watered and drought), and three rice varieties. Soil water potential was maintained at 0 kPa in the well-watered treatment. In the drought treatment, we reduced soil water potential to - 40 kPa in experiment 1 (Expt 1) and to - 80 kPa in experiment 2 (Expt 2). Drought reduced shoot and root dry biomass and grain yield of rice in both experiments. The reduction of grain yield was less with higher AMF colonization. Plants with higher AMF colonization showed higher leaf P concentrations than plants with lower colonization in Expt 1, but not in Expt 2. Plants with higher AMF colonization exhibited higher stomatal conductance and chlorophyll fluorescence than plants with lower colonization, especially under drought. Drought increased the levels of ABA and IAA, and AMF colonization also resulted in higher levels of IAA. The results suggest both nutrient-driven and plant hormone-driven pathways through which AMF confer drought tolerance to rice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32296945</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought.</ArticleTitle>
<Pagination>
<MedlinePgn>315-328</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-020-00953-z</ELocationID>
<Abstract>
<AbstractText>Drought reduces the availability of soil water and the mobility of nutrients, thereby limiting the growth and productivity of rice. Under drought, arbuscular mycorrhizal fungi (AMF) increase P uptake and sustain rice growth. However, we lack knowledge of how the AMF symbiosis contributes to drought tolerance of rice. In the greenhouse, we investigated mechanisms of AMF symbiosis that confer drought tolerance, such as enhanced nutrient uptake, stomatal conductance, chlorophyll fluorescence, and hormonal balance (abscisic acid (ABA) and indole acetic acid (IAA)). Two greenhouse pot experiments comprised three factors in a full factorial design with two AMF treatments (low- and high-AMF colonization), two water treatments (well-watered and drought), and three rice varieties. Soil water potential was maintained at 0 kPa in the well-watered treatment. In the drought treatment, we reduced soil water potential to - 40 kPa in experiment 1 (Expt 1) and to - 80 kPa in experiment 2 (Expt 2). Drought reduced shoot and root dry biomass and grain yield of rice in both experiments. The reduction of grain yield was less with higher AMF colonization. Plants with higher AMF colonization showed higher leaf P concentrations than plants with lower colonization in Expt 1, but not in Expt 2. Plants with higher AMF colonization exhibited higher stomatal conductance and chlorophyll fluorescence than plants with lower colonization, especially under drought. Drought increased the levels of ABA and IAA, and AMF colonization also resulted in higher levels of IAA. The results suggest both nutrient-driven and plant hormone-driven pathways through which AMF confer drought tolerance to rice.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chareesri</LastName>
<ForeName>Anupol</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands. a.chareesri@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Deyn</LastName>
<ForeName>Gerlinde B</ForeName>
<Initials>GB</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sergeeva</LastName>
<ForeName>Lidiya</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Polthanee</LastName>
<ForeName>Anan</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuyper</LastName>
<ForeName>Thomas W</ForeName>
<Initials>TW</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Sciences, Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="Y">Oryza</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Abscisic acid (ABA)</Keyword>
<Keyword MajorTopicYN="N">Chlorophyll fluorescence</Keyword>
<Keyword MajorTopicYN="N">Indole acetic acid (IAA)</Keyword>
<Keyword MajorTopicYN="N">Stomatal conductance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32296945</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-020-00953-z</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-020-00953-z</ArticleId>
<ArticleId IdType="pmc">PMC7228911</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Plant Physiol. 2015 Aug 1;185:75-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26291919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2015 Sep;134:141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25935603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):557-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23927052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Aug 27;20(17):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31461957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Mar;36(3):419-435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27999977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Environ. 2013;28(3):316-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Apr 23;69(9):2403-2414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29538660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Feb;39(2):441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26305264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2011 Jul;21(5):1696-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21830711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Nov;24(8):595-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24743902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Nov;162(11):1210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16323272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jul;223(1):134-149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30843202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2013 Apr;65(3):671-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23250115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2003 Sep;160(9):1073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 19;7:1237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27594859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Nov 1;167(16):1360-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20619485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2015 Jan;25(1):13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24831020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2016 Jul;188(7):425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27329476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Sep 11;27(17):R973-R978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28898670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Aug;169(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25130263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2019 Mar;139(1-3):227-238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29982909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 02;9(9):e109054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25275452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 May;2(3):194-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Oct;64(13):3983-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23913954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1987 Apr;170(4):489-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24233012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Jul 15;167(11):862-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20227134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2015 Oct;43(5):924-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26517905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>Thaïlande</li>
</country>
</list>
<tree>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Chareesri, Anupol" sort="Chareesri, Anupol" uniqKey="Chareesri A" first="Anupol" last="Chareesri">Anupol Chareesri</name>
</noRegion>
<name sortKey="De Deyn, Gerlinde B" sort="De Deyn, Gerlinde B" uniqKey="De Deyn G" first="Gerlinde B" last="De Deyn">Gerlinde B. De Deyn</name>
<name sortKey="Kuyper, Thomas W" sort="Kuyper, Thomas W" uniqKey="Kuyper T" first="Thomas W" last="Kuyper">Thomas W. Kuyper</name>
<name sortKey="Sergeeva, Lidiya" sort="Sergeeva, Lidiya" uniqKey="Sergeeva L" first="Lidiya" last="Sergeeva">Lidiya Sergeeva</name>
</country>
<country name="Thaïlande">
<noRegion>
<name sortKey="Polthanee, Anan" sort="Polthanee, Anan" uniqKey="Polthanee A" first="Anan" last="Polthanee">Anan Polthanee</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000131 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000131 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32296945
   |texte=   Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32296945" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020