Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza.

Identifieur interne : 003587 ( Main/Curation ); précédent : 003586; suivant : 003588

Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza.

Auteurs : Natalija Hohnjec [Allemagne] ; Martin F. Vieweg ; Alfred Pühler ; Anke Becker ; Helge Küster

Source :

RBID : pubmed:15778460

Descripteurs français

English descriptors

Abstract

Arbuscular mycorrhiza (AM) is a widespread symbiotic association between plants and fungal microsymbionts that supports plant development under nutrient-limiting and various stress conditions. In this study, we focused on the overlapping genetic program activated by two commonly studied microsymbionts in addition to identifying AM-related genes. We thus applied 16,086 probe microarrays to profile the transcriptome of the model legume Medicago truncatula during interactions with Glomus mosseae and Glomus intraradices and specified a total of 201 plant genes as significantly coinduced at least 2-fold, with more than 160 being reported as AM induced for the first time. Several hundred genes were additionally up-regulated during a sole interaction, indicating that the plant genetic program activated in AM to some extent depends on the colonizing microsymbiont. Genes induced during both interactions specified AM-related nitrate, ion, and sugar transporters, enzymes involved in secondary metabolism, proteases, and Kunitz-type protease inhibitors. Furthermore, coinduced genes encoded receptor kinases and other components of signal transduction pathways as well as AM-induced transcriptional regulators, thus reflecting changes in signaling. By the use of reporter gene expression, we demonstrated that one member of the AM-induced gene family encoding blue copper binding proteins (MtBcp1) was both specifically and strongly up-regulated in arbuscule-containing regions of mycorrhizal roots. A comparison of the AM expression profiles to those of nitrogen-fixing root nodules suggested only a limited overlap between the genetic programs orchestrating root endosymbioses.

DOI: 10.1104/pp.104.056572
PubMed: 15778460
PubMed Central: PMC1088321

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15778460

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza.</title>
<author>
<name sortKey="Hohnjec, Natalija" sort="Hohnjec, Natalija" uniqKey="Hohnjec N" first="Natalija" last="Hohnjec">Natalija Hohnjec</name>
<affiliation wicri:level="1">
<nlm:affiliation>Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33615 Bielefeld, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33615 Bielefeld</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vieweg, Martin F" sort="Vieweg, Martin F" uniqKey="Vieweg M" first="Martin F" last="Vieweg">Martin F. Vieweg</name>
</author>
<author>
<name sortKey="Puhler, Alfred" sort="Puhler, Alfred" uniqKey="Puhler A" first="Alfred" last="Pühler">Alfred Pühler</name>
</author>
<author>
<name sortKey="Becker, Anke" sort="Becker, Anke" uniqKey="Becker A" first="Anke" last="Becker">Anke Becker</name>
</author>
<author>
<name sortKey="Kuster, Helge" sort="Kuster, Helge" uniqKey="Kuster H" first="Helge" last="Küster">Helge Küster</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15778460</idno>
<idno type="pmid">15778460</idno>
<idno type="doi">10.1104/pp.104.056572</idno>
<idno type="pmc">PMC1088321</idno>
<idno type="wicri:Area/Main/Corpus">003587</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003587</idno>
<idno type="wicri:Area/Main/Curation">003587</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003587</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza.</title>
<author>
<name sortKey="Hohnjec, Natalija" sort="Hohnjec, Natalija" uniqKey="Hohnjec N" first="Natalija" last="Hohnjec">Natalija Hohnjec</name>
<affiliation wicri:level="1">
<nlm:affiliation>Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33615 Bielefeld, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33615 Bielefeld</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vieweg, Martin F" sort="Vieweg, Martin F" uniqKey="Vieweg M" first="Martin F" last="Vieweg">Martin F. Vieweg</name>
</author>
<author>
<name sortKey="Puhler, Alfred" sort="Puhler, Alfred" uniqKey="Puhler A" first="Alfred" last="Pühler">Alfred Pühler</name>
</author>
<author>
<name sortKey="Becker, Anke" sort="Becker, Anke" uniqKey="Becker A" first="Anke" last="Becker">Anke Becker</name>
</author>
<author>
<name sortKey="Kuster, Helge" sort="Kuster, Helge" uniqKey="Kuster H" first="Helge" last="Küster">Helge Küster</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cell Wall (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (metabolism)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Plant Growth Regulators (genetics)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (genetics)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteur de croissance végétal (génétique)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Medicago truncatula (génétique)</term>
<term>Medicago truncatula (microbiologie)</term>
<term>Medicago truncatula (métabolisme)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Symbiose (génétique)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Medicago truncatula</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur de croissance végétal</term>
<term>Medicago truncatula</term>
<term>Protéines de transport</term>
<term>Protéines végétales</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Medicago truncatula</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de croissance végétal</term>
<term>Medicago truncatula</term>
<term>Mycorhizes</term>
<term>Paroi cellulaire</term>
<term>Protéines de transport</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhiza (AM) is a widespread symbiotic association between plants and fungal microsymbionts that supports plant development under nutrient-limiting and various stress conditions. In this study, we focused on the overlapping genetic program activated by two commonly studied microsymbionts in addition to identifying AM-related genes. We thus applied 16,086 probe microarrays to profile the transcriptome of the model legume Medicago truncatula during interactions with Glomus mosseae and Glomus intraradices and specified a total of 201 plant genes as significantly coinduced at least 2-fold, with more than 160 being reported as AM induced for the first time. Several hundred genes were additionally up-regulated during a sole interaction, indicating that the plant genetic program activated in AM to some extent depends on the colonizing microsymbiont. Genes induced during both interactions specified AM-related nitrate, ion, and sugar transporters, enzymes involved in secondary metabolism, proteases, and Kunitz-type protease inhibitors. Furthermore, coinduced genes encoded receptor kinases and other components of signal transduction pathways as well as AM-induced transcriptional regulators, thus reflecting changes in signaling. By the use of reporter gene expression, we demonstrated that one member of the AM-induced gene family encoding blue copper binding proteins (MtBcp1) was both specifically and strongly up-regulated in arbuscule-containing regions of mycorrhizal roots. A comparison of the AM expression profiles to those of nitrogen-fixing root nodules suggested only a limited overlap between the genetic programs orchestrating root endosymbioses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15778460</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>137</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2005</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza.</ArticleTitle>
<Pagination>
<MedlinePgn>1283-301</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Arbuscular mycorrhiza (AM) is a widespread symbiotic association between plants and fungal microsymbionts that supports plant development under nutrient-limiting and various stress conditions. In this study, we focused on the overlapping genetic program activated by two commonly studied microsymbionts in addition to identifying AM-related genes. We thus applied 16,086 probe microarrays to profile the transcriptome of the model legume Medicago truncatula during interactions with Glomus mosseae and Glomus intraradices and specified a total of 201 plant genes as significantly coinduced at least 2-fold, with more than 160 being reported as AM induced for the first time. Several hundred genes were additionally up-regulated during a sole interaction, indicating that the plant genetic program activated in AM to some extent depends on the colonizing microsymbiont. Genes induced during both interactions specified AM-related nitrate, ion, and sugar transporters, enzymes involved in secondary metabolism, proteases, and Kunitz-type protease inhibitors. Furthermore, coinduced genes encoded receptor kinases and other components of signal transduction pathways as well as AM-induced transcriptional regulators, thus reflecting changes in signaling. By the use of reporter gene expression, we demonstrated that one member of the AM-induced gene family encoding blue copper binding proteins (MtBcp1) was both specifically and strongly up-regulated in arbuscule-containing regions of mycorrhizal roots. A comparison of the AM expression profiles to those of nitrogen-fixing root nodules suggested only a limited overlap between the genetic programs orchestrating root endosymbioses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hohnjec</LastName>
<ForeName>Natalija</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33615 Bielefeld, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vieweg</LastName>
<ForeName>Martin F</ForeName>
<Initials>MF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pühler</LastName>
<ForeName>Alfred</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>Anke</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Küster</LastName>
<ForeName>Helge</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AC126009</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>03</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
<ArticleId IdType="pii">pp.104.056572</ArticleId>
<ArticleId IdType="doi">10.1104/pp.104.056572</ArticleId>
<ArticleId IdType="pmc">PMC1088321</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):519-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1871-1883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):181-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2003 Apr;14(2):200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(4):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jul;53(374):1593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2004 Mar 4;108(2):95-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15129719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 13;94(10):5467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1063-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jun;12(6):901-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10852936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(2):250-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3159-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Apr;9(4):491-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Jan;11(1):14-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Oct;14(10):1168-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11605956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Nov;216(1):148-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12430024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2002 Jan 21;214(2):215-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11812174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Sep;50(2):197-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12175013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Mar;12(3):218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10065559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Sep;29(9):1955-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14584670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Aug 2;297(5582):793-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12161644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 24;302(5645):575-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Mar;54(4):583-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jul;13(7):763-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10875337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1996 May;9(4):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8634476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2002 Jan;23(1):122-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11824612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 May;15(5):411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1998;32:33-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9928474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):737-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Nov;44(11):1208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):473-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 May 24;296(5572):1470-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12029134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Jun;3(3):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):5004-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Aug;10(8):1233-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peptides. 2004 Jul;25(7):1215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15245883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Nov;38(5):755-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 May;115(1):125-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12010476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Mar;12(3):171-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10065555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ScientificWorldJournal. 2004 Jan 16;4:9-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14755099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Dec;17(12):1385-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15597744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 May;108(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 May 6;385(3):189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):952-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):637-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Oct;211(5):609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2004 Aug 31;11(4):263-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):878-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2004 Aug 31;18(1):53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15359124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jul;52(5):1077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14558666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Dec 15;30(24):5579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12490726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Oct;16(10):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14558692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Aug;41(8):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15219563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Oct;213(6):864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Feb;13(2):191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10659709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1540-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Sep;39(5):697-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2001 Apr;160(5):899-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 5;276(1):172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11034999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2003 Dec 19;106(2-3):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):840-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Sep;17(3):335-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1883994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Aug;14(4):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13680319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(4):487-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Mar;18(3):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11858837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jan;17(1):62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Apr;16(4):306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744459</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003587 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 003587 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15778460
   |texte=   Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:15778460" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020