Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues.

Identifieur interne : 002F94 ( Main/Curation ); précédent : 002F93; suivant : 002F95

Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues.

Auteurs : Bhoopander Giri [Inde] ; Rupam Kapoor ; K G Mukerji

Source :

RBID : pubmed:17372663

Descripteurs français

English descriptors

Abstract

A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m(-1)). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m(-1) salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m(-1)). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m(-1)), which lowered as salinity levels increased (6.5, 9.5 dS m(-1)), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.

DOI: 10.1007/s00248-007-9239-9
PubMed: 17372663

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17372663

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues.</title>
<author>
<name sortKey="Giri, Bhoopander" sort="Giri, Bhoopander" uniqKey="Giri B" first="Bhoopander" last="Giri">Bhoopander Giri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Delhi, Delhi, 110007, India. bhoopg@yahoo.com</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Botany, University of Delhi, Delhi, 110007</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kapoor, Rupam" sort="Kapoor, Rupam" uniqKey="Kapoor R" first="Rupam" last="Kapoor">Rupam Kapoor</name>
</author>
<author>
<name sortKey="Mukerji, K G" sort="Mukerji, K G" uniqKey="Mukerji K" first="K G" last="Mukerji">K G Mukerji</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17372663</idno>
<idno type="pmid">17372663</idno>
<idno type="doi">10.1007/s00248-007-9239-9</idno>
<idno type="wicri:Area/Main/Corpus">002F94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F94</idno>
<idno type="wicri:Area/Main/Curation">002F94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues.</title>
<author>
<name sortKey="Giri, Bhoopander" sort="Giri, Bhoopander" uniqKey="Giri B" first="Bhoopander" last="Giri">Bhoopander Giri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Delhi, Delhi, 110007, India. bhoopg@yahoo.com</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Botany, University of Delhi, Delhi, 110007</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kapoor, Rupam" sort="Kapoor, Rupam" uniqKey="Kapoor R" first="Rupam" last="Kapoor">Rupam Kapoor</name>
</author>
<author>
<name sortKey="Mukerji, K G" sort="Mukerji, K G" uniqKey="Mukerji K" first="K G" last="Mukerji">K G Mukerji</name>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="ISSN">0095-3628</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acacia (chemistry)</term>
<term>Acacia (drug effects)</term>
<term>Acacia (growth & development)</term>
<term>Acacia (microbiology)</term>
<term>Fungi (growth & development)</term>
<term>Fungi (isolation & purification)</term>
<term>Fungi (metabolism)</term>
<term>Heat-Shock Response (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Plant Roots (chemistry)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (chemistry)</term>
<term>Plant Shoots (microbiology)</term>
<term>Potassium (chemistry)</term>
<term>Seedlings (growth & development)</term>
<term>Sodium (chemistry)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Soil (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acacia (composition chimique)</term>
<term>Acacia (croissance et développement)</term>
<term>Acacia (effets des médicaments et des substances chimiques)</term>
<term>Acacia (microbiologie)</term>
<term>Champignons (croissance et développement)</term>
<term>Champignons (isolement et purification)</term>
<term>Champignons (métabolisme)</term>
<term>Chlorure de sodium (pharmacologie)</term>
<term>Mycorhizes (MeSH)</term>
<term>Plant (croissance et développement)</term>
<term>Potassium (composition chimique)</term>
<term>Pousses de plante (composition chimique)</term>
<term>Pousses de plante (microbiologie)</term>
<term>Racines de plante (composition chimique)</term>
<term>Racines de plante (microbiologie)</term>
<term>Réaction de choc thermique (MeSH)</term>
<term>Sodium (composition chimique)</term>
<term>Sol (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Potassium</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Acacia</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acacia</term>
<term>Potassium</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Acacia</term>
<term>Champignons</term>
<term>Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Acacia</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Acacia</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Acacia</term>
<term>Fungi</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Acacia</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Acacia</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorure de sodium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Heat-Shock Response</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mycorhizes</term>
<term>Réaction de choc thermique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m(-1)). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m(-1) salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m(-1)). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m(-1)), which lowered as salinity levels increased (6.5, 9.5 dS m(-1)), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17372663</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>12</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0095-3628</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>54</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues.</ArticleTitle>
<Pagination>
<MedlinePgn>753-60</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m(-1)). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m(-1) salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m(-1)). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m(-1)), which lowered as salinity levels increased (6.5, 9.5 dS m(-1)), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Giri</LastName>
<ForeName>Bhoopander</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Delhi, Delhi, 110007, India. bhoopg@yahoo.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kapoor</LastName>
<ForeName>Rupam</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mukerji</LastName>
<ForeName>K G</ForeName>
<Initials>KG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>03</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000045" MajorTopicYN="N">Acacia</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018869" MajorTopicYN="N">Heat-Shock Response</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17372663</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-007-9239-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2004 Oct;14(5):307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14574620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Apr;91(5):503-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12646496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Nov;82(3):765-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 002F94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:17372663
   |texte=   Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:17372663" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020