Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.

Identifieur interne : 001C01 ( Main/Curation ); précédent : 001C00; suivant : 001C02

The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.

Auteurs : Sergio Svistoonoff [France] ; Faiza Meriem Benabdoun ; Mathish Nambiar-Veetil ; Leandro Imanishi ; Virginie Vaissayre ; Stella Cesari ; Nathalie Diagne ; Valérie Hocher ; Françoise De Billy ; Jocelyne Bonneau ; Luis Wall ; Nadia Ykhlef ; Charles Rosenberg ; Didier Bogusz ; Claudine Franche ; Hassen Gherbi

Source :

RBID : pubmed:23741336

Descripteurs français

English descriptors

Abstract

Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis.

DOI: 10.1371/journal.pone.0064515
PubMed: 23741336
PubMed Central: PMC3669324

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23741336

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.</title>
<author>
<name sortKey="Svistoonoff, Sergio" sort="Svistoonoff, Sergio" uniqKey="Svistoonoff S" first="Sergio" last="Svistoonoff">Sergio Svistoonoff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Benabdoun, Faiza Meriem" sort="Benabdoun, Faiza Meriem" uniqKey="Benabdoun F" first="Faiza Meriem" last="Benabdoun">Faiza Meriem Benabdoun</name>
</author>
<author>
<name sortKey="Nambiar Veetil, Mathish" sort="Nambiar Veetil, Mathish" uniqKey="Nambiar Veetil M" first="Mathish" last="Nambiar-Veetil">Mathish Nambiar-Veetil</name>
</author>
<author>
<name sortKey="Imanishi, Leandro" sort="Imanishi, Leandro" uniqKey="Imanishi L" first="Leandro" last="Imanishi">Leandro Imanishi</name>
</author>
<author>
<name sortKey="Vaissayre, Virginie" sort="Vaissayre, Virginie" uniqKey="Vaissayre V" first="Virginie" last="Vaissayre">Virginie Vaissayre</name>
</author>
<author>
<name sortKey="Cesari, Stella" sort="Cesari, Stella" uniqKey="Cesari S" first="Stella" last="Cesari">Stella Cesari</name>
</author>
<author>
<name sortKey="Diagne, Nathalie" sort="Diagne, Nathalie" uniqKey="Diagne N" first="Nathalie" last="Diagne">Nathalie Diagne</name>
</author>
<author>
<name sortKey="Hocher, Valerie" sort="Hocher, Valerie" uniqKey="Hocher V" first="Valérie" last="Hocher">Valérie Hocher</name>
</author>
<author>
<name sortKey="De Billy, Francoise" sort="De Billy, Francoise" uniqKey="De Billy F" first="Françoise" last="De Billy">Françoise De Billy</name>
</author>
<author>
<name sortKey="Bonneau, Jocelyne" sort="Bonneau, Jocelyne" uniqKey="Bonneau J" first="Jocelyne" last="Bonneau">Jocelyne Bonneau</name>
</author>
<author>
<name sortKey="Wall, Luis" sort="Wall, Luis" uniqKey="Wall L" first="Luis" last="Wall">Luis Wall</name>
</author>
<author>
<name sortKey="Ykhlef, Nadia" sort="Ykhlef, Nadia" uniqKey="Ykhlef N" first="Nadia" last="Ykhlef">Nadia Ykhlef</name>
</author>
<author>
<name sortKey="Rosenberg, Charles" sort="Rosenberg, Charles" uniqKey="Rosenberg C" first="Charles" last="Rosenberg">Charles Rosenberg</name>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
</author>
<author>
<name sortKey="Franche, Claudine" sort="Franche, Claudine" uniqKey="Franche C" first="Claudine" last="Franche">Claudine Franche</name>
</author>
<author>
<name sortKey="Gherbi, Hassen" sort="Gherbi, Hassen" uniqKey="Gherbi H" first="Hassen" last="Gherbi">Hassen Gherbi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23741336</idno>
<idno type="pmid">23741336</idno>
<idno type="doi">10.1371/journal.pone.0064515</idno>
<idno type="pmc">PMC3669324</idno>
<idno type="wicri:Area/Main/Corpus">001C01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C01</idno>
<idno type="wicri:Area/Main/Curation">001C01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.</title>
<author>
<name sortKey="Svistoonoff, Sergio" sort="Svistoonoff, Sergio" uniqKey="Svistoonoff S" first="Sergio" last="Svistoonoff">Sergio Svistoonoff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Benabdoun, Faiza Meriem" sort="Benabdoun, Faiza Meriem" uniqKey="Benabdoun F" first="Faiza Meriem" last="Benabdoun">Faiza Meriem Benabdoun</name>
</author>
<author>
<name sortKey="Nambiar Veetil, Mathish" sort="Nambiar Veetil, Mathish" uniqKey="Nambiar Veetil M" first="Mathish" last="Nambiar-Veetil">Mathish Nambiar-Veetil</name>
</author>
<author>
<name sortKey="Imanishi, Leandro" sort="Imanishi, Leandro" uniqKey="Imanishi L" first="Leandro" last="Imanishi">Leandro Imanishi</name>
</author>
<author>
<name sortKey="Vaissayre, Virginie" sort="Vaissayre, Virginie" uniqKey="Vaissayre V" first="Virginie" last="Vaissayre">Virginie Vaissayre</name>
</author>
<author>
<name sortKey="Cesari, Stella" sort="Cesari, Stella" uniqKey="Cesari S" first="Stella" last="Cesari">Stella Cesari</name>
</author>
<author>
<name sortKey="Diagne, Nathalie" sort="Diagne, Nathalie" uniqKey="Diagne N" first="Nathalie" last="Diagne">Nathalie Diagne</name>
</author>
<author>
<name sortKey="Hocher, Valerie" sort="Hocher, Valerie" uniqKey="Hocher V" first="Valérie" last="Hocher">Valérie Hocher</name>
</author>
<author>
<name sortKey="De Billy, Francoise" sort="De Billy, Francoise" uniqKey="De Billy F" first="Françoise" last="De Billy">Françoise De Billy</name>
</author>
<author>
<name sortKey="Bonneau, Jocelyne" sort="Bonneau, Jocelyne" uniqKey="Bonneau J" first="Jocelyne" last="Bonneau">Jocelyne Bonneau</name>
</author>
<author>
<name sortKey="Wall, Luis" sort="Wall, Luis" uniqKey="Wall L" first="Luis" last="Wall">Luis Wall</name>
</author>
<author>
<name sortKey="Ykhlef, Nadia" sort="Ykhlef, Nadia" uniqKey="Ykhlef N" first="Nadia" last="Ykhlef">Nadia Ykhlef</name>
</author>
<author>
<name sortKey="Rosenberg, Charles" sort="Rosenberg, Charles" uniqKey="Rosenberg C" first="Charles" last="Rosenberg">Charles Rosenberg</name>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
</author>
<author>
<name sortKey="Franche, Claudine" sort="Franche, Claudine" uniqKey="Franche C" first="Claudine" last="Franche">Claudine Franche</name>
</author>
<author>
<name sortKey="Gherbi, Hassen" sort="Gherbi, Hassen" uniqKey="Gherbi H" first="Hassen" last="Gherbi">Hassen Gherbi</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biological Evolution (MeSH)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase (genetics)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase (metabolism)</term>
<term>Cannabaceae (enzymology)</term>
<term>Cannabaceae (genetics)</term>
<term>Fabaceae (enzymology)</term>
<term>Fabaceae (genetics)</term>
<term>Frankia (enzymology)</term>
<term>Frankia (genetics)</term>
<term>Gene Expression (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (enzymology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Nitrogen Fixation (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Root Nodulation (physiology)</term>
<term>Rhizobium (enzymology)</term>
<term>Rhizobium (genetics)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Transduction, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase (génétique)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase (métabolisme)</term>
<term>Cannabaceae (enzymologie)</term>
<term>Cannabaceae (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Fabaceae (enzymologie)</term>
<term>Fabaceae (génétique)</term>
<term>Fixation de l'azote (physiologie)</term>
<term>Frankia (enzymologie)</term>
<term>Frankia (génétique)</term>
<term>Mutation (MeSH)</term>
<term>Mycorhizes (enzymologie)</term>
<term>Mycorhizes (génétique)</term>
<term>Nodulation racinaire (physiologie)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Rhizobium (enzymologie)</term>
<term>Rhizobium (génétique)</term>
<term>Symbiose (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transduction génétique (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Cannabaceae</term>
<term>Fabaceae</term>
<term>Frankia</term>
<term>Mycorhizes</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cannabaceae</term>
<term>Fabaceae</term>
<term>Frankia</term>
<term>Mycorrhizae</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cannabaceae</term>
<term>Fabaceae</term>
<term>Frankia</term>
<term>Mycorrhizae</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase</term>
<term>Cannabaceae</term>
<term>Fabaceae</term>
<term>Frankia</term>
<term>Mycorhizes</term>
<term>Protéines bactériennes</term>
<term>Protéines végétales</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcium-Calmodulin-Dependent Protein Kinase Kinase</term>
<term>Protéines bactériennes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Fixation de l'azote</term>
<term>Nodulation racinaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Nitrogen Fixation</term>
<term>Plant Root Nodulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Biological Evolution</term>
<term>Gene Expression</term>
<term>Genetic Complementation Test</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Signal Transduction</term>
<term>Symbiosis</term>
<term>Transduction, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Mutation</term>
<term>Symbiose</term>
<term>Séquence d'acides aminés</term>
<term>Test de complémentation</term>
<term>Transduction du signal</term>
<term>Transduction génétique</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23741336</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>e64515</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0064515</ELocationID>
<Abstract>
<AbstractText>Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Svistoonoff</LastName>
<ForeName>Sergio</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benabdoun</LastName>
<ForeName>Faiza Meriem</ForeName>
<Initials>FM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nambiar-Veetil</LastName>
<ForeName>Mathish</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Imanishi</LastName>
<ForeName>Leandro</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vaissayre</LastName>
<ForeName>Virginie</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cesari</LastName>
<ForeName>Stella</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Diagne</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hocher</LastName>
<ForeName>Valérie</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de Billy</LastName>
<ForeName>Françoise</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonneau</LastName>
<ForeName>Jocelyne</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wall</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ykhlef</LastName>
<ForeName>Nadia</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rosenberg</LastName>
<ForeName>Charles</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bogusz</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Franche</LastName>
<ForeName>Claudine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gherbi</LastName>
<ForeName>Hassen</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>HF952923</AccessionNumber>
<AccessionNumber>HF952924</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.17</RegistryNumber>
<NameOfSubstance UI="D054737">Calcium-Calmodulin-Dependent Protein Kinase Kinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054737" MajorTopicYN="N">Calcium-Calmodulin-Dependent Protein Kinase Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027581" MajorTopicYN="N">Cannabaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040161" MajorTopicYN="N">Frankia</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="N">Nitrogen Fixation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055170" MajorTopicYN="N">Plant Root Nodulation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014161" MajorTopicYN="N">Transduction, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23741336</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0064515</ArticleId>
<ArticleId IdType="pii">PONE-D-13-03134</ArticleId>
<ArticleId IdType="pmc">PMC3669324</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Protein Pept Sci. 2011 Mar;12(2):156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21348842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jun;23(6):748-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Nov;49(11):1659-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Feb 18;331(6019):909-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Apr 12;1:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):304-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Feb;14(2):77-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jul 15;30(14):3059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jul;16(7):600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Nov;72(4):572-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22775286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1526-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Mar 4;6(3):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1619-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e44742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22970303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Aug;16(8):663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jan;17(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1986 Sep;16(2):124-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3018814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jun;23(6):740-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2003 Aug;30(4):289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12828942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Sep;16(9):808-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12971604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jul 1;63(1):141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):700-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jan;13(1):107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:119-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Sep;16(9):796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12971603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1647-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4928-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):514-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 1;316(5829):1307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Apr 19;344(6268):781-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2330031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1972-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):444-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995796</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001C01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23741336
   |texte=   The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:23741336" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020