Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs.

Identifieur interne : 001B09 ( Main/Curation ); précédent : 001B08; suivant : 001B10

Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs.

Auteurs : Giulia Morieri [Royaume-Uni] ; Eduardo A. Martinez ; Andrzej Jarynowski ; Hugues Driguez ; Richard Morris ; Giles E D. Oldroyd ; J Allan Downie

Source :

RBID : pubmed:24015832

Descripteurs français

English descriptors

Abstract

Rhizobial nodulation (Nod) factors activate both nodule morphogenesis and infection thread development during legume nodulation. Nod factors induce two different calcium responses: intra-nuclear calcium oscillations and a calcium influx at the root hair tip. Calcium oscillations activate nodule development; we wanted to test if the calcium influx is associated with infection. Sinorhizobium meliloti nodL and nodF mutations additively reduce infection of Medicago truncatula. Nod-factors made by the nodL mutant lack an acetyl group; mutation of nodF causes the nitrogen (N)-linked C16:2 acyl chain to be replaced by C18:1. We tested whether these Nod-factors differentially induced calcium influx and calcium spiking. The absence of the NodL-determined acetyl group greatly reduced the induction of calcium influx without affecting calcium spiking. The calcium influx was even further reduced if the N-linked C16:2 acyl group was replaced by C18:1. These additive effects on calcium influx correlate with the additive effects of mutations in nodF and nodL on legume infection. Infection thread development is inhibited by ethylene, which also inhibited Nod-factor-induced calcium influx. We conclude that Nod-factor perception differentially activates the two developmental pathways required for nodulation and that activation of the pathway involving the calcium influx is important for efficient infection.

DOI: 10.1111/nph.12475
PubMed: 24015832
PubMed Central: PMC3908372

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24015832

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs.</title>
<author>
<name sortKey="Morieri, Giulia" sort="Morieri, Giulia" uniqKey="Morieri G" first="Giulia" last="Morieri">Giulia Morieri</name>
<affiliation wicri:level="1">
<nlm:affiliation>John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martinez, Eduardo A" sort="Martinez, Eduardo A" uniqKey="Martinez E" first="Eduardo A" last="Martinez">Eduardo A. Martinez</name>
</author>
<author>
<name sortKey="Jarynowski, Andrzej" sort="Jarynowski, Andrzej" uniqKey="Jarynowski A" first="Andrzej" last="Jarynowski">Andrzej Jarynowski</name>
</author>
<author>
<name sortKey="Driguez, Hugues" sort="Driguez, Hugues" uniqKey="Driguez H" first="Hugues" last="Driguez">Hugues Driguez</name>
</author>
<author>
<name sortKey="Morris, Richard" sort="Morris, Richard" uniqKey="Morris R" first="Richard" last="Morris">Richard Morris</name>
</author>
<author>
<name sortKey="Oldroyd, Giles E D" sort="Oldroyd, Giles E D" uniqKey="Oldroyd G" first="Giles E D" last="Oldroyd">Giles E D. Oldroyd</name>
</author>
<author>
<name sortKey="Downie, J Allan" sort="Downie, J Allan" uniqKey="Downie J" first="J Allan" last="Downie">J Allan Downie</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24015832</idno>
<idno type="pmid">24015832</idno>
<idno type="doi">10.1111/nph.12475</idno>
<idno type="pmc">PMC3908372</idno>
<idno type="wicri:Area/Main/Corpus">001B09</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B09</idno>
<idno type="wicri:Area/Main/Curation">001B09</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs.</title>
<author>
<name sortKey="Morieri, Giulia" sort="Morieri, Giulia" uniqKey="Morieri G" first="Giulia" last="Morieri">Giulia Morieri</name>
<affiliation wicri:level="1">
<nlm:affiliation>John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martinez, Eduardo A" sort="Martinez, Eduardo A" uniqKey="Martinez E" first="Eduardo A" last="Martinez">Eduardo A. Martinez</name>
</author>
<author>
<name sortKey="Jarynowski, Andrzej" sort="Jarynowski, Andrzej" uniqKey="Jarynowski A" first="Andrzej" last="Jarynowski">Andrzej Jarynowski</name>
</author>
<author>
<name sortKey="Driguez, Hugues" sort="Driguez, Hugues" uniqKey="Driguez H" first="Hugues" last="Driguez">Hugues Driguez</name>
</author>
<author>
<name sortKey="Morris, Richard" sort="Morris, Richard" uniqKey="Morris R" first="Richard" last="Morris">Richard Morris</name>
</author>
<author>
<name sortKey="Oldroyd, Giles E D" sort="Oldroyd, Giles E D" uniqKey="Oldroyd G" first="Giles E D" last="Oldroyd">Giles E D. Oldroyd</name>
</author>
<author>
<name sortKey="Downie, J Allan" sort="Downie, J Allan" uniqKey="Downie J" first="J Allan" last="Downie">J Allan Downie</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Calcium (metabolism)</term>
<term>Calcium Signaling (genetics)</term>
<term>Ethylenes (metabolism)</term>
<term>Genes, Plant (MeSH)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (metabolism)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Root Nodulation (genetics)</term>
<term>Root Nodules, Plant (metabolism)</term>
<term>Sinorhizobium meliloti (metabolism)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Calcium (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Medicago truncatula (génétique)</term>
<term>Medicago truncatula (microbiologie)</term>
<term>Medicago truncatula (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Nodulation racinaire (génétique)</term>
<term>Nodules racinaires de plante (métabolisme)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Signalisation calcique (génétique)</term>
<term>Sinorhizobium meliloti (métabolisme)</term>
<term>Symbiose (MeSH)</term>
<term>Éthylènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Calcium</term>
<term>Ethylenes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Calcium Signaling</term>
<term>Medicago truncatula</term>
<term>Plant Root Nodulation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Nodulation racinaire</term>
<term>Protéines bactériennes</term>
<term>Signalisation calcique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Medicago truncatula</term>
<term>Mycorrhizae</term>
<term>Root Nodules, Plant</term>
<term>Sinorhizobium meliloti</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcium</term>
<term>Medicago truncatula</term>
<term>Mycorhizes</term>
<term>Nodules racinaires de plante</term>
<term>Protéines bactériennes</term>
<term>Sinorhizobium meliloti</term>
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Plant</term>
<term>Mutation</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Mutation</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rhizobial nodulation (Nod) factors activate both nodule morphogenesis and infection thread development during legume nodulation. Nod factors induce two different calcium responses: intra-nuclear calcium oscillations and a calcium influx at the root hair tip. Calcium oscillations activate nodule development; we wanted to test if the calcium influx is associated with infection. Sinorhizobium meliloti nodL and nodF mutations additively reduce infection of Medicago truncatula. Nod-factors made by the nodL mutant lack an acetyl group; mutation of nodF causes the nitrogen (N)-linked C16:2 acyl chain to be replaced by C18:1. We tested whether these Nod-factors differentially induced calcium influx and calcium spiking. The absence of the NodL-determined acetyl group greatly reduced the induction of calcium influx without affecting calcium spiking. The calcium influx was even further reduced if the N-linked C16:2 acyl group was replaced by C18:1. These additive effects on calcium influx correlate with the additive effects of mutations in nodF and nodL on legume infection. Infection thread development is inhibited by ethylene, which also inhibited Nod-factor-induced calcium influx. We conclude that Nod-factor perception differentially activates the two developmental pathways required for nodulation and that activation of the pathway involving the calcium influx is important for efficient infection. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24015832</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>200</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs.</ArticleTitle>
<Pagination>
<MedlinePgn>656-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.12475</ELocationID>
<Abstract>
<AbstractText>Rhizobial nodulation (Nod) factors activate both nodule morphogenesis and infection thread development during legume nodulation. Nod factors induce two different calcium responses: intra-nuclear calcium oscillations and a calcium influx at the root hair tip. Calcium oscillations activate nodule development; we wanted to test if the calcium influx is associated with infection. Sinorhizobium meliloti nodL and nodF mutations additively reduce infection of Medicago truncatula. Nod-factors made by the nodL mutant lack an acetyl group; mutation of nodF causes the nitrogen (N)-linked C16:2 acyl chain to be replaced by C18:1. We tested whether these Nod-factors differentially induced calcium influx and calcium spiking. The absence of the NodL-determined acetyl group greatly reduced the induction of calcium influx without affecting calcium spiking. The calcium influx was even further reduced if the N-linked C16:2 acyl group was replaced by C18:1. These additive effects on calcium influx correlate with the additive effects of mutations in nodF and nodL on legume infection. Infection thread development is inhibited by ethylene, which also inhibited Nod-factor-induced calcium influx. We conclude that Nod-factor perception differentially activates the two developmental pathways required for nodulation and that activation of the pathway involving the calcium influx is important for efficient infection. </AbstractText>
<CopyrightInformation>© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Morieri</LastName>
<ForeName>Giulia</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martinez</LastName>
<ForeName>Eduardo A</ForeName>
<Initials>EA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jarynowski</LastName>
<ForeName>Andrzej</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Driguez</LastName>
<ForeName>Hugues</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morris</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oldroyd</LastName>
<ForeName>Giles E D</ForeName>
<Initials>GE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Downie</LastName>
<ForeName>J Allan</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BBS/E/J/00000611</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/J004553/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C068605">nodF protein, Rhizobium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020013" MajorTopicYN="Y">Calcium Signaling</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055170" MajorTopicYN="Y">Plant Root Nodulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053204" MajorTopicYN="N">Root Nodules, Plant</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016962" MajorTopicYN="N">Sinorhizobium meliloti</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Medicago truncatula</Keyword>
<Keyword MajorTopicYN="N">Nod factor</Keyword>
<Keyword MajorTopicYN="N">calcium influx</Keyword>
<Keyword MajorTopicYN="N">ethylene</Keyword>
<Keyword MajorTopicYN="N">infection</Keyword>
<Keyword MajorTopicYN="N">nodulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24015832</ArticleId>
<ArticleId IdType="doi">10.1111/nph.12475</ArticleId>
<ArticleId IdType="pmc">PMC3908372</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 1993 Oct;10(2):351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7934826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):131-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Feb;172(2):901-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2298703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1999 Jun 11;72(1-2):33-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10406097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jul 1;63(1):141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 1;336(6085):1160-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22654057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1994 Feb;11(4):793-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8196551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 May 31;85(5):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8646776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(4):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Feb;65(3):404-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21265894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 24;275(5299):527-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8999796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 29;319(5867):1241-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18309082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Apr;19(4):1221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Oct;28(2):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Aug;19(8):914-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16903357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):4022-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:119-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Oct;53(10):1751-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22942250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 5;315(5808):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1996 Jan;15(5):305-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):976-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):442-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):324-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 29;441(7097):1153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16810257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Jul;5(7):566-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15232574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Dec;56(5):802-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18680562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010;1:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2008;24:551-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18837672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2509-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1957 Apr;16(2):374-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13416514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Oct;6(10):1357-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7994171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(6):883-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2001 May;128(9):1507-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2680-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 5;315(5808):104-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001B09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24015832
   |texte=   Host-specific Nod-factors associated with Medicago truncatula nodule infection differentially induce calcium influx and calcium spiking in root hairs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:24015832" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020