Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex.

Identifieur interne : 001699 ( Main/Curation ); précédent : 001698; suivant : 001700

Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex.

Auteurs : Myriam Charpentier ; Jongho Sun ; Jiangqi Wen ; Kirankumar S. Mysore ; Giles E D. Oldroyd

Source :

RBID : pubmed:25293963

Descripteurs français

English descriptors

Abstract

Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB'1. Mutations in PP2AB'1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB'1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB'1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization.

DOI: 10.1104/pp.114.246371
PubMed: 25293963
PubMed Central: PMC4256847

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25293963

Curation

No country items

Myriam Charpentier
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.) myriam.charpentier@jic.ac.uk giles.oldroyd@jic.ac.uk.</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.)</wicri:noCountry>
</affiliation>
Jongho Sun
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
Jiangqi Wen
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
Kirankumar S. Mysore
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
Giles E D. Oldroyd
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.) myriam.charpentier@jic.ac.uk giles.oldroyd@jic.ac.uk.</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.)</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex.</title>
<author>
<name sortKey="Charpentier, Myriam" sort="Charpentier, Myriam" uniqKey="Charpentier M" first="Myriam" last="Charpentier">Myriam Charpentier</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.) myriam.charpentier@jic.ac.uk giles.oldroyd@jic.ac.uk.</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.)</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sun, Jongho" sort="Sun, Jongho" uniqKey="Sun J" first="Jongho" last="Sun">Jongho Sun</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wen, Jiangqi" sort="Wen, Jiangqi" uniqKey="Wen J" first="Jiangqi" last="Wen">Jiangqi Wen</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mysore, Kirankumar S" sort="Mysore, Kirankumar S" uniqKey="Mysore K" first="Kirankumar S" last="Mysore">Kirankumar S. Mysore</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Oldroyd, Giles E D" sort="Oldroyd, Giles E D" uniqKey="Oldroyd G" first="Giles E D" last="Oldroyd">Giles E D. Oldroyd</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.) myriam.charpentier@jic.ac.uk giles.oldroyd@jic.ac.uk.</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.)</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25293963</idno>
<idno type="pmid">25293963</idno>
<idno type="doi">10.1104/pp.114.246371</idno>
<idno type="pmc">PMC4256847</idno>
<idno type="wicri:Area/Main/Corpus">001699</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001699</idno>
<idno type="wicri:Area/Main/Curation">001699</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001699</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex.</title>
<author>
<name sortKey="Charpentier, Myriam" sort="Charpentier, Myriam" uniqKey="Charpentier M" first="Myriam" last="Charpentier">Myriam Charpentier</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.) myriam.charpentier@jic.ac.uk giles.oldroyd@jic.ac.uk.</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.)</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sun, Jongho" sort="Sun, Jongho" uniqKey="Sun J" first="Jongho" last="Sun">Jongho Sun</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wen, Jiangqi" sort="Wen, Jiangqi" uniqKey="Wen J" first="Jiangqi" last="Wen">Jiangqi Wen</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mysore, Kirankumar S" sort="Mysore, Kirankumar S" uniqKey="Mysore K" first="Kirankumar S" last="Mysore">Kirankumar S. Mysore</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Oldroyd, Giles E D" sort="Oldroyd, Giles E D" uniqKey="Oldroyd G" first="Giles E D" last="Oldroyd">Giles E D. Oldroyd</name>
<affiliation>
<nlm:affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.) myriam.charpentier@jic.ac.uk giles.oldroyd@jic.ac.uk.</nlm:affiliation>
<wicri:noCountry code="subField">K.S.M.)</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (metabolism)</term>
<term>Calcium Signaling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Medicago truncatula (enzymology)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (enzymology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (microbiology)</term>
<term>Protein Phosphatase 2 (genetics)</term>
<term>Protein Phosphatase 2 (metabolism)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Medicago truncatula (enzymologie)</term>
<term>Medicago truncatula (génétique)</term>
<term>Medicago truncatula (microbiologie)</term>
<term>Mutation (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Protein Phosphatase 2 (génétique)</term>
<term>Protein Phosphatase 2 (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (enzymologie)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (microbiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Signalisation calcique (MeSH)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Protein Phosphatase 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
<term>Protein Phosphatase 2</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Protein Phosphatase 2</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Medicago truncatula</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide abscissique</term>
<term>Facteur de croissance végétal</term>
<term>Protein Phosphatase 2</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Calcium Signaling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Reporter</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Gènes rapporteurs</term>
<term>Mutation</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Signalisation calcique</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB'1. Mutations in PP2AB'1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB'1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB'1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25293963</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>166</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex.</ArticleTitle>
<Pagination>
<MedlinePgn>2077-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.114.246371</ELocationID>
<Abstract>
<AbstractText>Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB'1. Mutations in PP2AB'1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB'1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB'1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. </AbstractText>
<CopyrightInformation>© 2014 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Charpentier</LastName>
<ForeName>Myriam</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.) myriam.charpentier@jic.ac.uk giles.oldroyd@jic.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Jongho</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wen</LastName>
<ForeName>Jiangqi</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mysore</LastName>
<ForeName>Kirankumar S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oldroyd</LastName>
<ForeName>Giles E D</ForeName>
<Initials>GE</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.) myriam.charpentier@jic.ac.uk giles.oldroyd@jic.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>KC859637</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BBS/E/J/00000603</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/J004553/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D054648">Protein Phosphatase 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020013" MajorTopicYN="N">Calcium Signaling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054648" MajorTopicYN="N">Protein Phosphatase 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25293963</ArticleId>
<ArticleId IdType="pii">pp.114.246371</ArticleId>
<ArticleId IdType="doi">10.1104/pp.114.246371</ArticleId>
<ArticleId IdType="pmc">PMC4256847</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Dev Biol. 2007 Apr 1;304(1):297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17239844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):580-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 May 10;21(9):R346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21549957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2011 Dec;15(12):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2849-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9855-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11139577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12132-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(3):307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 May 15;167(8):606-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20079554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Mar;69(5):822-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22035171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 May 15;256(5059):998-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10744524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Mar 15;483(7389):341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S15-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2005 Oct;92(10):1675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2681-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jun;14(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Dec 15;115(Pt 24):4891-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;678:179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20931380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Feb;21(3):475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8382968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(4):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2011 Jul;124(4):509-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21416314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Sep;11(9):434-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16890475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jul;45(7):914-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:561-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Nov;72(3):512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22775306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:781-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Apr;54(2):335-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 20;6(13):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(10):3657-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22407649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Jun;38(6):651-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22623151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(5):763-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(1):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):E665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jul;43(4):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11052204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Apr;23(4):1494-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Oct;230(5):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19672620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 May;38(4):563-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15125764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Nov;23(11):4079-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2911-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 4;286(5):3429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Oct;26(1):523-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7948902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):3889-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1965-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Dec;15(6):691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Apr;12(4):169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17368080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2509-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Jan;182:3-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:651-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21825141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Apr;12(4):599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001699 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001699 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25293963
   |texte=   Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:25293963" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020