Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparisons of ectomycorrhizal colonization of transgenic american chestnut with those of the wild type, a conventionally bred hybrid, and related fagaceae species.

Identifieur interne : 001687 ( Main/Curation ); précédent : 001686; suivant : 001688

Comparisons of ectomycorrhizal colonization of transgenic american chestnut with those of the wild type, a conventionally bred hybrid, and related fagaceae species.

Auteurs : Katherine M. D'Amico [États-Unis] ; Thomas R. Horton [États-Unis] ; Charles A. Maynard [États-Unis] ; Stephen V. Stehman [États-Unis] ; Allison D. Oakes [États-Unis] ; William A. Powell [États-Unis]

Source :

RBID : pubmed:25326296

Descripteurs français

English descriptors

Abstract

American chestnut (Castanea dentata [Marsh.] Borkh.) dominated the eastern forests of North America, serving as a keystone species both ecologically and economically until the introduction of the chestnut blight, Cryphonectria parasitica, functionally eradicated the species. Restoration efforts include genetic transformation utilizing genes such as oxalate oxidase to produce potentially blight-resistant chestnut trees that could be released back into the native range. However, before such a release can be undertaken, it is necessary to assess nontarget impacts. Since oxalate oxidase is meant to combat a fungal pathogen, we are particularly interested in potential impacts of this transgene on beneficial fungi. This study compares ectomycorrhizal fungal colonization on a transgenic American chestnut clone expressing enhanced blight resistance to a wild-type American chestnut, a conventionally bred American-Chinese hybrid chestnut, and other Fagaceae species. A greenhouse bioassay used soil from two field sites with different soil types and land use histories. The number of colonized root tips was counted, and fungal species were identified using morphology, restriction fragment length polymorphism (RFLP), and DNA sequencing. Results showed that total ectomycorrhizal colonization varied more by soil type than by tree species. Individual fungal species varied in their colonization rates, but there were no significant differences between colonization on transgenic and wild-type chestnuts. This study shows that the oxalate oxidase gene can increase resistance against Cryphonectria parasitica without changing the colonization rate for ectomycorrhizal species. These findings will be crucial for a potential deregulation of blight-resistant American chestnuts containing the oxalate oxidase gene.

DOI: 10.1128/AEM.02169-14
PubMed: 25326296
PubMed Central: PMC4272724

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25326296

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparisons of ectomycorrhizal colonization of transgenic american chestnut with those of the wild type, a conventionally bred hybrid, and related fagaceae species.</title>
<author>
<name sortKey="D Amico, Katherine M" sort="D Amico, Katherine M" uniqKey="D Amico K" first="Katherine M" last="D'Amico">Katherine M. D'Amico</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Horton, Thomas R" sort="Horton, Thomas R" uniqKey="Horton T" first="Thomas R" last="Horton">Thomas R. Horton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Maynard, Charles A" sort="Maynard, Charles A" uniqKey="Maynard C" first="Charles A" last="Maynard">Charles A. Maynard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stehman, Stephen V" sort="Stehman, Stephen V" uniqKey="Stehman S" first="Stephen V" last="Stehman">Stephen V. Stehman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Oakes, Allison D" sort="Oakes, Allison D" uniqKey="Oakes A" first="Allison D" last="Oakes">Allison D. Oakes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Powell, William A" sort="Powell, William A" uniqKey="Powell W" first="William A" last="Powell">William A. Powell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA wapowell@esf.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25326296</idno>
<idno type="pmid">25326296</idno>
<idno type="doi">10.1128/AEM.02169-14</idno>
<idno type="pmc">PMC4272724</idno>
<idno type="wicri:Area/Main/Corpus">001687</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001687</idno>
<idno type="wicri:Area/Main/Curation">001687</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001687</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparisons of ectomycorrhizal colonization of transgenic american chestnut with those of the wild type, a conventionally bred hybrid, and related fagaceae species.</title>
<author>
<name sortKey="D Amico, Katherine M" sort="D Amico, Katherine M" uniqKey="D Amico K" first="Katherine M" last="D'Amico">Katherine M. D'Amico</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Horton, Thomas R" sort="Horton, Thomas R" uniqKey="Horton T" first="Thomas R" last="Horton">Thomas R. Horton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Maynard, Charles A" sort="Maynard, Charles A" uniqKey="Maynard C" first="Charles A" last="Maynard">Charles A. Maynard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stehman, Stephen V" sort="Stehman, Stephen V" uniqKey="Stehman S" first="Stephen V" last="Stehman">Stephen V. Stehman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Oakes, Allison D" sort="Oakes, Allison D" uniqKey="Oakes A" first="Allison D" last="Oakes">Allison D. Oakes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Powell, William A" sort="Powell, William A" uniqKey="Powell W" first="William A" last="Powell">William A. Powell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA wapowell@esf.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Fungal (chemistry)</term>
<term>DNA, Fungal (genetics)</term>
<term>Fagaceae (microbiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (composition chimique)</term>
<term>ADN fongique (génétique)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Fagaceae (microbiologie)</term>
<term>Mycorhizes (classification)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Mycorhizes (isolement et purification)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Polymorphisme de restriction (MeSH)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Racines de plante (microbiologie)</term>
<term>Végétaux génétiquement modifiés (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN fongique</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN fongique</term>
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Fagaceae</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fagaceae</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Molecular Sequence Data</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Données de séquences moléculaires</term>
<term>Polymorphisme de restriction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">American chestnut (Castanea dentata [Marsh.] Borkh.) dominated the eastern forests of North America, serving as a keystone species both ecologically and economically until the introduction of the chestnut blight, Cryphonectria parasitica, functionally eradicated the species. Restoration efforts include genetic transformation utilizing genes such as oxalate oxidase to produce potentially blight-resistant chestnut trees that could be released back into the native range. However, before such a release can be undertaken, it is necessary to assess nontarget impacts. Since oxalate oxidase is meant to combat a fungal pathogen, we are particularly interested in potential impacts of this transgene on beneficial fungi. This study compares ectomycorrhizal fungal colonization on a transgenic American chestnut clone expressing enhanced blight resistance to a wild-type American chestnut, a conventionally bred American-Chinese hybrid chestnut, and other Fagaceae species. A greenhouse bioassay used soil from two field sites with different soil types and land use histories. The number of colonized root tips was counted, and fungal species were identified using morphology, restriction fragment length polymorphism (RFLP), and DNA sequencing. Results showed that total ectomycorrhizal colonization varied more by soil type than by tree species. Individual fungal species varied in their colonization rates, but there were no significant differences between colonization on transgenic and wild-type chestnuts. This study shows that the oxalate oxidase gene can increase resistance against Cryphonectria parasitica without changing the colonization rate for ectomycorrhizal species. These findings will be crucial for a potential deregulation of blight-resistant American chestnuts containing the oxalate oxidase gene. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25326296</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>81</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparisons of ectomycorrhizal colonization of transgenic american chestnut with those of the wild type, a conventionally bred hybrid, and related fagaceae species.</ArticleTitle>
<Pagination>
<MedlinePgn>100-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.02169-14</ELocationID>
<Abstract>
<AbstractText>American chestnut (Castanea dentata [Marsh.] Borkh.) dominated the eastern forests of North America, serving as a keystone species both ecologically and economically until the introduction of the chestnut blight, Cryphonectria parasitica, functionally eradicated the species. Restoration efforts include genetic transformation utilizing genes such as oxalate oxidase to produce potentially blight-resistant chestnut trees that could be released back into the native range. However, before such a release can be undertaken, it is necessary to assess nontarget impacts. Since oxalate oxidase is meant to combat a fungal pathogen, we are particularly interested in potential impacts of this transgene on beneficial fungi. This study compares ectomycorrhizal fungal colonization on a transgenic American chestnut clone expressing enhanced blight resistance to a wild-type American chestnut, a conventionally bred American-Chinese hybrid chestnut, and other Fagaceae species. A greenhouse bioassay used soil from two field sites with different soil types and land use histories. The number of colonized root tips was counted, and fungal species were identified using morphology, restriction fragment length polymorphism (RFLP), and DNA sequencing. Results showed that total ectomycorrhizal colonization varied more by soil type than by tree species. Individual fungal species varied in their colonization rates, but there were no significant differences between colonization on transgenic and wild-type chestnuts. This study shows that the oxalate oxidase gene can increase resistance against Cryphonectria parasitica without changing the colonization rate for ectomycorrhizal species. These findings will be crucial for a potential deregulation of blight-resistant American chestnuts containing the oxalate oxidase gene. </AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>D'Amico</LastName>
<ForeName>Katherine M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horton</LastName>
<ForeName>Thomas R</ForeName>
<Initials>TR</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maynard</LastName>
<ForeName>Charles A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stehman</LastName>
<ForeName>Stephen V</ForeName>
<Initials>SV</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest and Natural Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oakes</LastName>
<ForeName>Allison D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Powell</LastName>
<ForeName>William A</ForeName>
<Initials>WA</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA wapowell@esf.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>KM464680</AccessionNumber>
<AccessionNumber>KM464681</AccessionNumber>
<AccessionNumber>KM464682</AccessionNumber>
<AccessionNumber>KM464683</AccessionNumber>
<AccessionNumber>KM464684</AccessionNumber>
<AccessionNumber>KM464685</AccessionNumber>
<AccessionNumber>KM464686</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.3.4</RegistryNumber>
<NameOfSubstance UI="C020598">oxalate oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029962" MajorTopicYN="N">Fagaceae</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25326296</ArticleId>
<ArticleId IdType="pii">AEM.02169-14</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.02169-14</ArticleId>
<ArticleId IdType="pmc">PMC4272724</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Transgenic Res. 2007 Jun;16(3):261-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17436060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Dec;19(1):27-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18807258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 May;76(2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2004 May-Jun;33(3):806-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15224914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 20;285(34):26685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20558740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1983 Aug;9(8):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24407807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Nov;228:88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25438789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Nov;12(11):2191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Apr;7(3):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2012 Oct;22(7):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22349958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 May 1;16(5):248-254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Feb;214(4):653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11925050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Apr;1162:18-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19432643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2004 Feb 5;107(3):193-232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Apr;45(6):619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1972;10:429-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Mar;68(3):1325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11872484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Jul;26(7):977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17310333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 May;11(5):247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Apr;89(4):1043-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Mar;5(3):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8467221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(2):367-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509360</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001687 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001687 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25326296
   |texte=   Comparisons of ectomycorrhizal colonization of transgenic american chestnut with those of the wild type, a conventionally bred hybrid, and related fagaceae species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:25326296" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020