Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

Identifieur interne : 001162 ( Main/Curation ); précédent : 001161; suivant : 001163

Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

Auteurs : Eloise Foo [Australie] ; Erin L. Mcadam [Australie] ; James L. Weller [Australie] ; James B. Reid [Australie]

Source :

RBID : pubmed:26889005

Descripteurs français

English descriptors

Abstract

The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.

DOI: 10.1093/jxb/erw047
PubMed: 26889005
PubMed Central: PMC4809293

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26889005

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.</title>
<author>
<name sortKey="Foo, Eloise" sort="Foo, Eloise" uniqKey="Foo E" first="Eloise" last="Foo">Eloise Foo</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mcadam, Erin L" sort="Mcadam, Erin L" uniqKey="Mcadam E" first="Erin L" last="Mcadam">Erin L. Mcadam</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Weller, James L" sort="Weller, James L" uniqKey="Weller J" first="James L" last="Weller">James L. Weller</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reid, James B" sort="Reid, James B" uniqKey="Reid J" first="James B" last="Reid">James B. Reid</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia jim.reid@utas.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26889005</idno>
<idno type="pmid">26889005</idno>
<idno type="doi">10.1093/jxb/erw047</idno>
<idno type="pmc">PMC4809293</idno>
<idno type="wicri:Area/Main/Corpus">001162</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001162</idno>
<idno type="wicri:Area/Main/Curation">001162</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001162</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.</title>
<author>
<name sortKey="Foo, Eloise" sort="Foo, Eloise" uniqKey="Foo E" first="Eloise" last="Foo">Eloise Foo</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mcadam, Erin L" sort="Mcadam, Erin L" uniqKey="Mcadam E" first="Erin L" last="Mcadam">Erin L. Mcadam</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Weller, James L" sort="Weller, James L" uniqKey="Weller J" first="James L" last="Weller">James L. Weller</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reid, James B" sort="Reid, James B" uniqKey="Reid J" first="James B" last="Reid">James B. Reid</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia jim.reid@utas.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brassinosteroids (metabolism)</term>
<term>Colony Count, Microbial (MeSH)</term>
<term>Ethylenes (metabolism)</term>
<term>Gibberellins (metabolism)</term>
<term>Indoleacetic Acids (pharmacology)</term>
<term>Models, Biological (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (physiology)</term>
<term>Organophosphorus Compounds (pharmacology)</term>
<term>Peas (drug effects)</term>
<term>Peas (metabolism)</term>
<term>Peas (microbiology)</term>
<term>Phenotype (MeSH)</term>
<term>Phthalimides (pharmacology)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Root Nodulation (drug effects)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (growth & development)</term>
<term>Rhizobium (drug effects)</term>
<term>Rhizobium (physiology)</term>
<term>Symbiosis (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides indolacétiques (pharmacologie)</term>
<term>Brassinostéroïdes (métabolisme)</term>
<term>Composés organiques du phosphore (pharmacologie)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Gibbérellines (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Mycorhizes (effets des médicaments et des substances chimiques)</term>
<term>Mycorhizes (physiologie)</term>
<term>Nodulation racinaire (effets des médicaments et des substances chimiques)</term>
<term>Numération de colonies microbiennes (MeSH)</term>
<term>Phtalimides (pharmacologie)</term>
<term>Phénotype (MeSH)</term>
<term>Pois (effets des médicaments et des substances chimiques)</term>
<term>Pois (microbiologie)</term>
<term>Pois (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (effets des médicaments et des substances chimiques)</term>
<term>Rhizobium (effets des médicaments et des substances chimiques)</term>
<term>Rhizobium (physiologie)</term>
<term>Symbiose (effets des médicaments et des substances chimiques)</term>
<term>Éthylènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Brassinosteroids</term>
<term>Ethylenes</term>
<term>Gibberellins</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>Organophosphorus Compounds</term>
<term>Phthalimides</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mycorrhizae</term>
<term>Peas</term>
<term>Plant Root Nodulation</term>
<term>Plant Roots</term>
<term>Rhizobium</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mycorhizes</term>
<term>Nodulation racinaire</term>
<term>Pois</term>
<term>Racines de plante</term>
<term>Rhizobium</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Peas</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Pois</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Peas</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Brassinostéroïdes</term>
<term>Facteur de croissance végétal</term>
<term>Gibbérellines</term>
<term>Pois</term>
<term>Protéines végétales</term>
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Composés organiques du phosphore</term>
<term>Phtalimides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Colony Count, Microbial</term>
<term>Models, Biological</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles biologiques</term>
<term>Numération de colonies microbiennes</term>
<term>Phénotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26889005</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>67</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.</ArticleTitle>
<Pagination>
<MedlinePgn>2413-24</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erw047</ELocationID>
<Abstract>
<AbstractText>The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.</AbstractText>
<CopyrightInformation>© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Foo</LastName>
<ForeName>Eloise</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McAdam</LastName>
<ForeName>Erin L</ForeName>
<Initials>EL</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weller</LastName>
<ForeName>James L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reid</LastName>
<ForeName>James B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia jim.reid@utas.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060406">Brassinosteroids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010797">Phthalimides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>306R88V86P</RegistryNumber>
<NameOfSubstance UI="C002687">alpha-naphthylphthalamic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6U1S09C61L</RegistryNumber>
<NameOfSubstance UI="C030737">indoleacetic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>XU5R5VQ87S</RegistryNumber>
<NameOfSubstance UI="C005073">ethephon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060406" MajorTopicYN="N">Brassinosteroids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018532" MajorTopicYN="N">Peas</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010797" MajorTopicYN="N">Phthalimides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055170" MajorTopicYN="N">Plant Root Nodulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arbuscular mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">brassinosteroids</Keyword>
<Keyword MajorTopicYN="N">ein2</Keyword>
<Keyword MajorTopicYN="N">ethylene insensitivity</Keyword>
<Keyword MajorTopicYN="N">gibberellins</Keyword>
<Keyword MajorTopicYN="N">hormone mutants</Keyword>
<Keyword MajorTopicYN="N">nodulation</Keyword>
<Keyword MajorTopicYN="N">peas</Keyword>
<Keyword MajorTopicYN="N">root growth.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26889005</ArticleId>
<ArticleId IdType="pii">erw047</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erw047</ArticleId>
<ArticleId IdType="pmc">PMC4809293</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2169-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17630276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):580-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Sep;6(9):1300-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22019636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 May;111(5):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23508650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Nov;47(4):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11669574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Apr;141(4):299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21214880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Dec;100(4):1759-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(13):4047-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25948707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1967 Aug;42(8):1077-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16656616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Jan;52(1):61-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E5025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25792252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 May;6(5):755-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21543888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Jun;2(6):513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Mar;61(5):1251-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Jan;74(1):72-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jan;225(2):353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16906434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Sep;37(9):2051-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3311-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19567479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 24;275(5299):527-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8999796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2014 Jan 1;217(Pt 1):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24353205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jun 25;284(5423):2148-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10381874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):5004-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Sep;31(9):1203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18507809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Oct;16(5):554-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Jul;32(7):945-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23749097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Apr;221(1):141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15605238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Apr;119(4):1517-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Jun;59(6):1947-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2396-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):233-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26175514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):413-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2012 Nov;22(11):1613-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23070300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1969 Aug;44(8):1203-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Sep;91(1):310-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2013 Apr;55(4):395-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Nov;234(5):1073-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21927948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):829-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):335-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Sep;54(9):1469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23825220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Oct 20;10(4):348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22018235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jun;133(2):417-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(6):911-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Jun;78(5):877-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24654931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 12;296(5566):343-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11951045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Jan;24(1):130-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24343576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2001 Aug;11(3):137-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24595433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(10):e970426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25482803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Jan;47(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19010688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Jan;6(1):76-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23066094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Nov;36(11):1926-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 May;113(6):1037-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24694828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Oct 19;338(6105):390-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2220-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1366-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258018</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001162 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001162 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26889005
   |texte=   Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:26889005" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020