Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus.

Identifieur interne : 000750 ( Main/Curation ); précédent : 000749; suivant : 000751

AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus.

Auteurs : Li Xue [Allemagne] ; Lompong Klinnawee [Allemagne] ; Yue Zhou [Allemagne] ; Georgios Saridis [Allemagne] ; Vinod Vijayakumar [Allemagne, États-Unis] ; Mathias Brands [Allemagne] ; Peter Dörmann [Allemagne] ; Tamara Gigolashvili [Allemagne] ; Franziska Turck [Allemagne] ; Marcel Bucher [Allemagne]

Source :

RBID : pubmed:30209216

Descripteurs français

English descriptors

Abstract

The arbuscular mycorrhizal (AM) symbiosis, a widespread mutualistic association between land plants and fungi, depends on reciprocal exchange of phosphorus driven by proton-coupled phosphate uptake into host plants and carbon supplied to AM fungi by host-dependent sugar and lipid biosynthesis. The molecular mechanisms and cis-regulatory modules underlying the control of phosphate uptake and de novo fatty acid synthesis in AM symbiosis are poorly understood. Here, we show that the AP2 family transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), a WRINKLED1 (WRI1) homolog, directly binds the evolutionary conserved CTTC motif that is enriched in mycorrhiza-regulated genes and activates Lotus japonicus phosphate transporter 4 (LjPT4) in vivo and in vitro. Moreover, the mycorrhiza-inducible gene encoding H+-ATPase (LjHA1), implicated in energizing nutrient uptake at the symbiotic interface across the periarbuscular membrane, is coregulated with LjPT4 by CBX1. Accordingly, CBX1-defective mutants show reduced mycorrhizal colonization. Furthermore, genome-wide-binding profiles, DNA-binding studies, and heterologous expression reveal additional binding of CBX1 to AW box, the consensus DNA-binding motif for WRI1, that is enriched in promoters of glycolysis and fatty acid biosynthesis genes. We show that CBX1 activates expression of lipid metabolic genes including glycerol-3-phosphate acyltransferase RAM2 implicated in acylglycerol biosynthesis. Our finding defines the role of CBX1 as a regulator of host genes involved in phosphate uptake and lipid synthesis through binding to the CTTC/AW molecular module, and supports a model underlying bidirectional exchange of phosphorus and carbon, a fundamental trait in the mutualistic AM symbiosis.

DOI: 10.1073/pnas.1812275115
PubMed: 30209216
PubMed Central: PMC6166803

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30209216

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal
<i>Lotus japonicus</i>
.</title>
<author>
<name sortKey="Xue, Li" sort="Xue, Li" uniqKey="Xue L" first="Li" last="Xue">Li Xue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Klinnawee, Lompong" sort="Klinnawee, Lompong" uniqKey="Klinnawee L" first="Lompong" last="Klinnawee">Lompong Klinnawee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yue" sort="Zhou, Yue" uniqKey="Zhou Y" first="Yue" last="Zhou">Yue Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Saridis, Georgios" sort="Saridis, Georgios" uniqKey="Saridis G" first="Georgios" last="Saridis">Georgios Saridis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vijayakumar, Vinod" sort="Vijayakumar, Vinod" uniqKey="Vijayakumar V" first="Vinod" last="Vijayakumar">Vinod Vijayakumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Columbus, OH 43210.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Plant Pathology, The Ohio State University, Columbus</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Brands, Mathias" sort="Brands, Mathias" uniqKey="Brands M" first="Mathias" last="Brands">Mathias Brands</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dormann, Peter" sort="Dormann, Peter" uniqKey="Dormann P" first="Peter" last="Dörmann">Peter Dörmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gigolashvili, Tamara" sort="Gigolashvili, Tamara" uniqKey="Gigolashvili T" first="Tamara" last="Gigolashvili">Tamara Gigolashvili</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Turck, Franziska" sort="Turck, Franziska" uniqKey="Turck F" first="Franziska" last="Turck">Franziska Turck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany; m.bucher@uni-koeln.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30209216</idno>
<idno type="pmid">30209216</idno>
<idno type="doi">10.1073/pnas.1812275115</idno>
<idno type="pmc">PMC6166803</idno>
<idno type="wicri:Area/Main/Corpus">000750</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000750</idno>
<idno type="wicri:Area/Main/Curation">000750</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000750</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal
<i>Lotus japonicus</i>
.</title>
<author>
<name sortKey="Xue, Li" sort="Xue, Li" uniqKey="Xue L" first="Li" last="Xue">Li Xue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Klinnawee, Lompong" sort="Klinnawee, Lompong" uniqKey="Klinnawee L" first="Lompong" last="Klinnawee">Lompong Klinnawee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yue" sort="Zhou, Yue" uniqKey="Zhou Y" first="Yue" last="Zhou">Yue Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Saridis, Georgios" sort="Saridis, Georgios" uniqKey="Saridis G" first="Georgios" last="Saridis">Georgios Saridis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vijayakumar, Vinod" sort="Vijayakumar, Vinod" uniqKey="Vijayakumar V" first="Vinod" last="Vijayakumar">Vinod Vijayakumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Columbus, OH 43210.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
<wicri:cityArea>Department of Plant Pathology, The Ohio State University, Columbus</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Brands, Mathias" sort="Brands, Mathias" uniqKey="Brands M" first="Mathias" last="Brands">Mathias Brands</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dormann, Peter" sort="Dormann, Peter" uniqKey="Dormann P" first="Peter" last="Dörmann">Peter Dörmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gigolashvili, Tamara" sort="Gigolashvili, Tamara" uniqKey="Gigolashvili T" first="Tamara" last="Gigolashvili">Tamara Gigolashvili</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Turck, Franziska" sort="Turck, Franziska" uniqKey="Turck F" first="Franziska" last="Turck">Franziska Turck</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bucher, Marcel" sort="Bucher, Marcel" uniqKey="Bucher M" first="Marcel" last="Bucher">Marcel Bucher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany; m.bucher@uni-koeln.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungal Proteins (metabolism)</term>
<term>Lotus (genetics)</term>
<term>Lotus (metabolism)</term>
<term>Lotus (microbiology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phosphate Transport Proteins (metabolism)</term>
<term>Phosphates (metabolism)</term>
<term>Proton-Translocating ATPases (metabolism)</term>
<term>Symbiosis (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteurs de transcription (métabolisme)</term>
<term>Loteae (génétique)</term>
<term>Loteae (microbiologie)</term>
<term>Loteae (métabolisme)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Phosphates (métabolisme)</term>
<term>Proton-Translocating ATPases (métabolisme)</term>
<term>Protéines de transport du phosphate (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Symbiose (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Phosphate Transport Proteins</term>
<term>Phosphates</term>
<term>Proton-Translocating ATPases</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lotus</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Loteae</term>
<term>Mycorhizes</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lotus</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Loteae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lotus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Loteae</term>
<term>Mycorhizes</term>
<term>Phosphates</term>
<term>Proton-Translocating ATPases</term>
<term>Protéines de transport du phosphate</term>
<term>Protéines fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The arbuscular mycorrhizal (AM) symbiosis, a widespread mutualistic association between land plants and fungi, depends on reciprocal exchange of phosphorus driven by proton-coupled phosphate uptake into host plants and carbon supplied to AM fungi by host-dependent sugar and lipid biosynthesis. The molecular mechanisms and
<i>cis</i>
-regulatory modules underlying the control of phosphate uptake and de novo fatty acid synthesis in AM symbiosis are poorly understood. Here, we show that the AP2 family transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), a WRINKLED1 (WRI1) homolog, directly binds the evolutionary conserved CTTC motif that is enriched in mycorrhiza-regulated genes and activates
<i>Lotus japonicus</i>
phosphate transporter 4 (
<i>LjPT4</i>
) in vivo and in vitro. Moreover, the mycorrhiza-inducible gene encoding H
<sup>+</sup>
-ATPase (
<i>LjHA1</i>
), implicated in energizing nutrient uptake at the symbiotic interface across the periarbuscular membrane, is coregulated with
<i>LjPT4</i>
by CBX1. Accordingly,
<i>CBX1</i>
-defective mutants show reduced mycorrhizal colonization. Furthermore, genome-wide-binding profiles, DNA-binding studies, and heterologous expression reveal additional binding of CBX1 to AW box, the consensus DNA-binding motif for WRI1, that is enriched in promoters of glycolysis and fatty acid biosynthesis genes. We show that CBX1 activates expression of lipid metabolic genes including glycerol-3-phosphate acyltransferase
<i>RAM2</i>
implicated in acylglycerol biosynthesis. Our finding defines the role of CBX1 as a regulator of host genes involved in phosphate uptake and lipid synthesis through binding to the CTTC/AW molecular module, and supports a model underlying bidirectional exchange of phosphorus and carbon, a fundamental trait in the mutualistic AM symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30209216</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>115</Volume>
<Issue>39</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal
<i>Lotus japonicus</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>E9239-E9246</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1812275115</ELocationID>
<Abstract>
<AbstractText>The arbuscular mycorrhizal (AM) symbiosis, a widespread mutualistic association between land plants and fungi, depends on reciprocal exchange of phosphorus driven by proton-coupled phosphate uptake into host plants and carbon supplied to AM fungi by host-dependent sugar and lipid biosynthesis. The molecular mechanisms and
<i>cis</i>
-regulatory modules underlying the control of phosphate uptake and de novo fatty acid synthesis in AM symbiosis are poorly understood. Here, we show that the AP2 family transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), a WRINKLED1 (WRI1) homolog, directly binds the evolutionary conserved CTTC motif that is enriched in mycorrhiza-regulated genes and activates
<i>Lotus japonicus</i>
phosphate transporter 4 (
<i>LjPT4</i>
) in vivo and in vitro. Moreover, the mycorrhiza-inducible gene encoding H
<sup>+</sup>
-ATPase (
<i>LjHA1</i>
), implicated in energizing nutrient uptake at the symbiotic interface across the periarbuscular membrane, is coregulated with
<i>LjPT4</i>
by CBX1. Accordingly,
<i>CBX1</i>
-defective mutants show reduced mycorrhizal colonization. Furthermore, genome-wide-binding profiles, DNA-binding studies, and heterologous expression reveal additional binding of CBX1 to AW box, the consensus DNA-binding motif for WRI1, that is enriched in promoters of glycolysis and fatty acid biosynthesis genes. We show that CBX1 activates expression of lipid metabolic genes including glycerol-3-phosphate acyltransferase
<i>RAM2</i>
implicated in acylglycerol biosynthesis. Our finding defines the role of CBX1 as a regulator of host genes involved in phosphate uptake and lipid synthesis through binding to the CTTC/AW molecular module, and supports a model underlying bidirectional exchange of phosphorus and carbon, a fundamental trait in the mutualistic AM symbiosis.</AbstractText>
<CopyrightInformation>Copyright © 2018 the Author(s). Published by PNAS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-9367-0155</Identifier>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klinnawee</LastName>
<ForeName>Lompong</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saridis</LastName>
<ForeName>Georgios</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vijayakumar</LastName>
<ForeName>Vinod</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, The Ohio State University, Columbus, OH 43210.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brands</LastName>
<ForeName>Mathias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dörmann</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gigolashvili</LastName>
<ForeName>Tamara</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turck</LastName>
<ForeName>Franziska</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0002-4982-5949</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bucher</LastName>
<ForeName>Marcel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-1680-9413</Identifier>
<AffiliationInfo>
<Affiliation>Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany; m.bucher@uni-koeln.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028061">Phosphate Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.3.14</RegistryNumber>
<NameOfSubstance UI="D006180">Proton-Translocating ATPases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Mol Plant. 2018 Dec 3;11(12):1421-1423</RefSource>
<PMID Version="1">30447333</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070116" MajorTopicYN="N">Lotus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028061" MajorTopicYN="N">Phosphate Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006180" MajorTopicYN="N">Proton-Translocating ATPases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">AP2 transcription factor</Keyword>
<Keyword MajorTopicYN="Y">CTTC cis-regulatory element</Keyword>
<Keyword MajorTopicYN="Y">fatty acid biosynthesis</Keyword>
<Keyword MajorTopicYN="Y">mycorrhizal symbiosis</Keyword>
<Keyword MajorTopicYN="Y">phosphate transport</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30209216</ArticleId>
<ArticleId IdType="pii">1812275115</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1812275115</ArticleId>
<ArticleId IdType="pmc">PMC6166803</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2015 Sep;83(5):864-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26305482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Oct;26(7):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27103309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jun;24(6):662-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Jul;95(2):219-232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29687516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(5):825-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 4;22(23):2236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Jul 20;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28726631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Mar;51(3):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):1157-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21106037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):836-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23442117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1172-1175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Dec;169(4):2774-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26511916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Dec;24(12):5007-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23243127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2141-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(4):575-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):11-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 May 04;2(5):16063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27243656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):674-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 May 16;13:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23679580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 29;26(4):1808-1817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Apr 25;26(8):1126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27115681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Oct;24(10):4236-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13390-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26438870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1631-1645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28380681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Mar;39(3):660-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26476189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Jun 16;356(6343):1175-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jan 18;2:15208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Feb;27(2):139-146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27766430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 26;4:533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24409191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Aug;199(3):639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24010138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Oct 24;26(20):2770-2778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27641773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):854-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(2):236-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15807785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Jan;10(1):22-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Aug;56(8):1490-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26009592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Feb;39(2):393-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26297195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):809-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(2):280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jul;47(7):807-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16774930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 29;26(4):1818-1830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(3):476-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1632-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25615409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000750 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000750 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30209216
   |texte=   AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:30209216" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020