Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In Planta Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions.

Identifieur interne : 000748 ( Main/Curation ); précédent : 000747; suivant : 000749

In Planta Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions.

Auteurs : G. Schwob [France] ; M. Roy [France] ; A C Pozzi [France] ; A. Herrera-Belaroussi [France] ; M P Fernandez [France]

Source :

RBID : pubmed:30217853

Descripteurs français

English descriptors

Abstract

The Alnus genus forms symbiosis with the actinobacteria Frankia spp. and ectomycorrhizal fungi. Two types of Frankia lineages can be distinguished based on their ability to sporulate in planta Spore-positive (Sp+) strains are predominant on Alnus incana and Alnus viridis in highlands, while spore-negative (Sp-) strains are mainly associated with Alnus glutinosa in lowlands. Here, we investigated whether the Sp+ predominance in nodules is due to host selection of certain Frankia genotypes from soil communities or the result of the ecological history of the alder stand soil, as well as the effect of the sporulation genotype on the ectomycorrhizal (ECM) communities. Trapping experiments were conducted using A. glutinosa, A. incana, and A. viridis plantlets on 6 soils, differing in the alder species and the frequency of Sp+ nodules in the field. Higher diversity of Frankia spp. and variation in Sp+ frequencies were observed in the trapping than in the fields. Both indigenous and trapping species shape Frankia community structure in trapped nodules. Nodulation impediments were observed under several trapping conditions in Sp+ soils, supporting a narrower host range of Sp+ Frankia species. A. incana and A. viridis were able to associate equally with compatible Sp+ and Sp- strains in the greenhouse. Additionally, no host shift was observed for Alnus-specific ECM, and the sporulation genotype of Frankia spp. defined the ECM communities on the host roots. The symbiotic association is likely determined by the host range, the soil history, and the type of in plantaFrankia species. These results provide an insight into the biogeographical drivers of alder symbionts in the Holarctic region.IMPORTANCE Most Frankia-actinorhiza plant symbioses are capable of high rates of nitrogen fixation comparable to those found on legumes. Yet, our understanding of the ecology and distribution of Frankia spp. is still very limited. Several studies have focused on the distribution patterns of Frankia spp., demonstrating a combination of host and pedoclimatic parameters in their biogeography. However, very few have considered the in planta sporulation form of the strain, although it is a unique feature among all symbiotic plant-associated microbes. Compared with Sp- Frankia strains, Sp+ strains would be obligate symbionts that are highly dependent on the presence of a compatible host species and with lower efficiency in nitrogen fixation. Understanding the biogeographical drivers of Sp+ Frankia strains might help elucidate the ecological role of in planta sporulation and the extent to which this trait mediates host-partner interactions in the alder-Frankia-ECM fungal symbiosis.

DOI: 10.1128/AEM.01737-18
PubMed: 30217853
PubMed Central: PMC6238062

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30217853

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<i>In Planta</i>
Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions.</title>
<author>
<name sortKey="Schwob, G" sort="Schwob, G" uniqKey="Schwob G" first="G" last="Schwob">G. Schwob</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France guillaume_schwob@hotmail.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roy, M" sort="Roy, M" uniqKey="Roy M" first="M" last="Roy">M. Roy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire Évolution et Diversité Biologique, UMR 5174, UPS, CNRS, ENFA, IRD, Université Paul Sabatier, Toulouse, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Évolution et Diversité Biologique, UMR 5174, UPS, CNRS, ENFA, IRD, Université Paul Sabatier, Toulouse</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pozzi, A C" sort="Pozzi, A C" uniqKey="Pozzi A" first="A C" last="Pozzi">A C Pozzi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biométrie et Biologie Evolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, HCL, Université Lyon 1, Université de Lyon, Villeurbanne, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Biométrie et Biologie Evolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, HCL, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Herrera Belaroussi, A" sort="Herrera Belaroussi, A" uniqKey="Herrera Belaroussi A" first="A" last="Herrera-Belaroussi">A. Herrera-Belaroussi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, M P" sort="Fernandez, M P" uniqKey="Fernandez M" first="M P" last="Fernandez">M P Fernandez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30217853</idno>
<idno type="pmid">30217853</idno>
<idno type="doi">10.1128/AEM.01737-18</idno>
<idno type="pmc">PMC6238062</idno>
<idno type="wicri:Area/Main/Corpus">000748</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000748</idno>
<idno type="wicri:Area/Main/Curation">000748</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000748</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">
<i>In Planta</i>
Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions.</title>
<author>
<name sortKey="Schwob, G" sort="Schwob, G" uniqKey="Schwob G" first="G" last="Schwob">G. Schwob</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France guillaume_schwob@hotmail.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Roy, M" sort="Roy, M" uniqKey="Roy M" first="M" last="Roy">M. Roy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire Évolution et Diversité Biologique, UMR 5174, UPS, CNRS, ENFA, IRD, Université Paul Sabatier, Toulouse, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Évolution et Diversité Biologique, UMR 5174, UPS, CNRS, ENFA, IRD, Université Paul Sabatier, Toulouse</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pozzi, A C" sort="Pozzi, A C" uniqKey="Pozzi A" first="A C" last="Pozzi">A C Pozzi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biométrie et Biologie Evolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, HCL, Université Lyon 1, Université de Lyon, Villeurbanne, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Biométrie et Biologie Evolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, HCL, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Herrera Belaroussi, A" sort="Herrera Belaroussi, A" uniqKey="Herrera Belaroussi A" first="A" last="Herrera-Belaroussi">A. Herrera-Belaroussi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, M P" sort="Fernandez, M P" uniqKey="Fernandez M" first="M P" last="Fernandez">M P Fernandez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alnus (microbiology)</term>
<term>Alnus (physiology)</term>
<term>Frankia (classification)</term>
<term>Frankia (growth & development)</term>
<term>Frankia (isolation & purification)</term>
<term>Frankia (physiology)</term>
<term>Fungi (genetics)</term>
<term>Fungi (isolation & purification)</term>
<term>Fungi (physiology)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen Fixation (MeSH)</term>
<term>Root Nodules, Plant (microbiology)</term>
<term>Root Nodules, Plant (physiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Spores, Bacterial (classification)</term>
<term>Spores, Bacterial (growth & development)</term>
<term>Spores, Bacterial (isolation & purification)</term>
<term>Spores, Bacterial (physiology)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alnus (microbiologie)</term>
<term>Alnus (physiologie)</term>
<term>Champignons (génétique)</term>
<term>Champignons (isolement et purification)</term>
<term>Champignons (physiologie)</term>
<term>Fixation de l'azote (MeSH)</term>
<term>Frankia (classification)</term>
<term>Frankia (croissance et développement)</term>
<term>Frankia (isolement et purification)</term>
<term>Frankia (physiologie)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (isolement et purification)</term>
<term>Mycorhizes (physiologie)</term>
<term>Nodules racinaires de plante (microbiologie)</term>
<term>Nodules racinaires de plante (physiologie)</term>
<term>Spores bactériens (classification)</term>
<term>Spores bactériens (croissance et développement)</term>
<term>Spores bactériens (isolement et purification)</term>
<term>Spores bactériens (physiologie)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Frankia</term>
<term>Spores, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Frankia</term>
<term>Spores bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Frankia</term>
<term>Spores, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Champignons</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Frankia</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
<term>Spores, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Champignons</term>
<term>Frankia</term>
<term>Mycorhizes</term>
<term>Spores bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Alnus</term>
<term>Nodules racinaires de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Alnus</term>
<term>Root Nodules, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Alnus</term>
<term>Champignons</term>
<term>Frankia</term>
<term>Mycorhizes</term>
<term>Nodules racinaires de plante</term>
<term>Spores bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Alnus</term>
<term>Frankia</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
<term>Root Nodules, Plant</term>
<term>Spores, Bacterial</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Nitrogen Fixation</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Fixation de l'azote</term>
<term>Frankia</term>
<term>Microbiologie du sol</term>
<term>Spores bactériens</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The
<i>Alnus</i>
genus forms symbiosis with the actinobacteria
<i>Frankia</i>
spp. and ectomycorrhizal fungi. Two types of
<i>Frankia</i>
lineages can be distinguished based on their ability to sporulate
<i>in planta</i>
Spore-positive (Sp+) strains are predominant on
<i>Alnus incana</i>
and
<i>Alnus viridis</i>
in highlands, while spore-negative (Sp-) strains are mainly associated with
<i>Alnus glutinosa</i>
in lowlands. Here, we investigated whether the Sp+ predominance in nodules is due to host selection of certain
<i>Frankia</i>
genotypes from soil communities or the result of the ecological history of the alder stand soil, as well as the effect of the sporulation genotype on the ectomycorrhizal (ECM) communities. Trapping experiments were conducted using
<i>A. glutinosa</i>
,
<i>A. incana</i>
, and
<i>A. viridis</i>
plantlets on 6 soils, differing in the alder species and the frequency of Sp+ nodules in the field. Higher diversity of
<i>Frankia</i>
spp. and variation in Sp+ frequencies were observed in the trapping than in the fields. Both indigenous and trapping species shape
<i>Frankia</i>
community structure in trapped nodules. Nodulation impediments were observed under several trapping conditions in Sp+ soils, supporting a narrower host range of Sp+
<i>Frankia</i>
species.
<i>A. incana</i>
and
<i>A. viridis</i>
were able to associate equally with compatible Sp+ and Sp- strains in the greenhouse. Additionally, no host shift was observed for
<i>Alnus</i>
-specific ECM, and the sporulation genotype of
<i>Frankia</i>
spp. defined the ECM communities on the host roots. The symbiotic association is likely determined by the host range, the soil history, and the type of
<i>in planta</i>
<i>Frankia</i>
species. These results provide an insight into the biogeographical drivers of alder symbionts in the Holarctic region.
<b>IMPORTANCE</b>
Most
<i>Frankia</i>
-actinorhiza plant symbioses are capable of high rates of nitrogen fixation comparable to those found on legumes. Yet, our understanding of the ecology and distribution of
<i>Frankia</i>
spp. is still very limited. Several studies have focused on the distribution patterns of
<i>Frankia</i>
spp., demonstrating a combination of host and pedoclimatic parameters in their biogeography. However, very few have considered the
<i>in planta</i>
sporulation form of the strain, although it is a unique feature among all symbiotic plant-associated microbes. Compared with Sp-
<i>Frankia</i>
strains, Sp+ strains would be obligate symbionts that are highly dependent on the presence of a compatible host species and with lower efficiency in nitrogen fixation. Understanding the biogeographical drivers of Sp+
<i>Frankia</i>
strains might help elucidate the ecological role of
<i>in planta</i>
sporulation and the extent to which this trait mediates host-partner interactions in the alder-
<i>Frankia</i>
-ECM fungal symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30217853</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>
<i>In Planta</i>
Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01737-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01737-18</ELocationID>
<Abstract>
<AbstractText>The
<i>Alnus</i>
genus forms symbiosis with the actinobacteria
<i>Frankia</i>
spp. and ectomycorrhizal fungi. Two types of
<i>Frankia</i>
lineages can be distinguished based on their ability to sporulate
<i>in planta</i>
Spore-positive (Sp+) strains are predominant on
<i>Alnus incana</i>
and
<i>Alnus viridis</i>
in highlands, while spore-negative (Sp-) strains are mainly associated with
<i>Alnus glutinosa</i>
in lowlands. Here, we investigated whether the Sp+ predominance in nodules is due to host selection of certain
<i>Frankia</i>
genotypes from soil communities or the result of the ecological history of the alder stand soil, as well as the effect of the sporulation genotype on the ectomycorrhizal (ECM) communities. Trapping experiments were conducted using
<i>A. glutinosa</i>
,
<i>A. incana</i>
, and
<i>A. viridis</i>
plantlets on 6 soils, differing in the alder species and the frequency of Sp+ nodules in the field. Higher diversity of
<i>Frankia</i>
spp. and variation in Sp+ frequencies were observed in the trapping than in the fields. Both indigenous and trapping species shape
<i>Frankia</i>
community structure in trapped nodules. Nodulation impediments were observed under several trapping conditions in Sp+ soils, supporting a narrower host range of Sp+
<i>Frankia</i>
species.
<i>A. incana</i>
and
<i>A. viridis</i>
were able to associate equally with compatible Sp+ and Sp- strains in the greenhouse. Additionally, no host shift was observed for
<i>Alnus</i>
-specific ECM, and the sporulation genotype of
<i>Frankia</i>
spp. defined the ECM communities on the host roots. The symbiotic association is likely determined by the host range, the soil history, and the type of
<i>in planta</i>
<i>Frankia</i>
species. These results provide an insight into the biogeographical drivers of alder symbionts in the Holarctic region.
<b>IMPORTANCE</b>
Most
<i>Frankia</i>
-actinorhiza plant symbioses are capable of high rates of nitrogen fixation comparable to those found on legumes. Yet, our understanding of the ecology and distribution of
<i>Frankia</i>
spp. is still very limited. Several studies have focused on the distribution patterns of
<i>Frankia</i>
spp., demonstrating a combination of host and pedoclimatic parameters in their biogeography. However, very few have considered the
<i>in planta</i>
sporulation form of the strain, although it is a unique feature among all symbiotic plant-associated microbes. Compared with Sp-
<i>Frankia</i>
strains, Sp+ strains would be obligate symbionts that are highly dependent on the presence of a compatible host species and with lower efficiency in nitrogen fixation. Understanding the biogeographical drivers of Sp+
<i>Frankia</i>
strains might help elucidate the ecological role of
<i>in planta</i>
sporulation and the extent to which this trait mediates host-partner interactions in the alder-
<i>Frankia</i>
-ECM fungal symbiosis.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schwob</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France guillaume_schwob@hotmail.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Évolution et Diversité Biologique, UMR 5174, UPS, CNRS, ENFA, IRD, Université Paul Sabatier, Toulouse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pozzi</LastName>
<ForeName>A C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biométrie et Biologie Evolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, HCL, Université Lyon 1, Université de Lyon, Villeurbanne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Herrera-Belaroussi</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernandez</LastName>
<ForeName>M P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Écologie Microbienne, UMR 5557, CNRS, INRA, VetAgro Sup, Université Lyon 1, Université de Lyon, Villeurbanne, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029661" MajorTopicYN="N">Alnus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040161" MajorTopicYN="N">Frankia</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="N">Nitrogen Fixation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053204" MajorTopicYN="N">Root Nodules, Plant</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013171" MajorTopicYN="N">Spores, Bacterial</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Alnus</Keyword>
<Keyword MajorTopicYN="Y">Frankia</Keyword>
<Keyword MajorTopicYN="Y">actinorhizal symbiosis</Keyword>
<Keyword MajorTopicYN="Y">ectomycorrhizae</Keyword>
<Keyword MajorTopicYN="Y">host specificity</Keyword>
<Keyword MajorTopicYN="Y">in planta sporulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30217853</ArticleId>
<ArticleId IdType="pii">AEM.01737-18</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01737-18</ArticleId>
<ArticleId IdType="pmc">PMC6238062</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Syst Appl Microbiol. 2015 Oct;38(7):501-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2015 Sep;17(9):3125-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25335453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2015 Aug;9(8):1723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25603394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2017 Aug;19(8):3235-3250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28618146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Environ. 2016;31(1):11-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26726131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 Aug;58(2):384-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19330550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Feb;201(3):733-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24117919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Jul;160(4):619-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19352714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jun;198(4):1239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Jul;115(7):569-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21724164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Mar;62(3):979-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8975625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2018 Jul;41(4):311-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29653822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2017 Mar;30(3):205-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28072559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jul;219(1):336-349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29377140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2006 Jun;100(6):1228-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16696670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):979-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25124146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Feb;4(2):102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;537:39-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19378139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1996 Jan;46(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8573482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Manage. 1997 Mar;21(2):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jun;198(4):1228-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23496225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e42149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2011 Feb 09;11:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21306639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2016 Jan;16(1):176-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25959493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 Feb 14;84(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29247058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 09;5:775</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Jul;60(7):2421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(6):1729-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19342429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 May;67(5):2116-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319089</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000748 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000748 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30217853
   |texte=   In Planta Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:30217853" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020