Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mycorrhizae and Rhizobacteria on Precambrian Rocky Gold Mine Tailings: I. Mine-Adapted Symbionts Promote White Spruce Health and Growth.

Identifieur interne : 000743 ( Main/Curation ); précédent : 000742; suivant : 000744

Mycorrhizae and Rhizobacteria on Precambrian Rocky Gold Mine Tailings: I. Mine-Adapted Symbionts Promote White Spruce Health and Growth.

Auteurs : Martin B. Nadeau [Canada] ; Joan Laur [Canada] ; Damase P. Khasa [Canada]

Source :

RBID : pubmed:30233614

Abstract

White spruce [Picea glauca (Moench) Voss] is a commercially valuable boreal tree that has been known for its ability to colonize deglaciated rock tailings. Over the last decade, there has been an increasing interest in using this species for the revegetation and successful restoration of abandoned mine spoils. Herein, we conducted a glasshouse experiment to screen mycorrhizal fungi and rhizobacteria capable of improving the health and growth of white spruce seedlings growing directly on waste rocks (WRs) or fine tailings (FTs) from the Sigma-Lamaque gold mine located in the Canadian Abitibi region. After 32 weeks, measurements of health, growth, and mycorrhizal colonization variables of seedlings were performed. Overall, symbionts isolated from roots of healthy white spruce seedlings growing on the mining site, especially Cadophora finlandia Cad. fin. MBN0213 GenBank No. KC840625 and Pseudomonas putida MBN0213 GenBank No. AY391278, were more efficient in enhancing seedling health and growth than allochthonous species and constitute promising microbial symbionts. In general, mycorrhizae promoted plant health and belowground development, while rhizobacteria enhanced aboveground plant biomass. The observed beneficial effects were substrate-, strain-, and/or strains combination-specific. Therefore, preliminary experiments in control conditions such as the one described here can be part of an efficient and integrated strategy to select ecologically well-adapted symbiotic microorganisms, critical for the success of a long-term revegetation program.

DOI: 10.3389/fpls.2018.01267
PubMed: 30233614
PubMed Central: PMC6130231

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30233614

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mycorrhizae and Rhizobacteria on Precambrian Rocky Gold Mine Tailings: I. Mine-Adapted Symbionts Promote White Spruce Health and Growth.</title>
<author>
<name sortKey="Nadeau, Martin B" sort="Nadeau, Martin B" uniqKey="Nadeau M" first="Martin B" last="Nadeau">Martin B. Nadeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viridis Terra Innovations Inc., Sainte-Marie, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Viridis Terra Innovations Inc., Sainte-Marie, QC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Laur, Joan" sort="Laur, Joan" uniqKey="Laur J" first="Joan" last="Laur">Joan Laur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Khasa, Damase P" sort="Khasa, Damase P" uniqKey="Khasa D" first="Damase P" last="Khasa">Damase P. Khasa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30233614</idno>
<idno type="pmid">30233614</idno>
<idno type="doi">10.3389/fpls.2018.01267</idno>
<idno type="pmc">PMC6130231</idno>
<idno type="wicri:Area/Main/Corpus">000743</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000743</idno>
<idno type="wicri:Area/Main/Curation">000743</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000743</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mycorrhizae and Rhizobacteria on Precambrian Rocky Gold Mine Tailings: I. Mine-Adapted Symbionts Promote White Spruce Health and Growth.</title>
<author>
<name sortKey="Nadeau, Martin B" sort="Nadeau, Martin B" uniqKey="Nadeau M" first="Martin B" last="Nadeau">Martin B. Nadeau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viridis Terra Innovations Inc., Sainte-Marie, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Viridis Terra Innovations Inc., Sainte-Marie, QC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Laur, Joan" sort="Laur, Joan" uniqKey="Laur J" first="Joan" last="Laur">Joan Laur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Khasa, Damase P" sort="Khasa, Damase P" uniqKey="Khasa D" first="Damase P" last="Khasa">Damase P. Khasa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">White spruce [
<i>Picea glauca</i>
(Moench) Voss] is a commercially valuable boreal tree that has been known for its ability to colonize deglaciated rock tailings. Over the last decade, there has been an increasing interest in using this species for the revegetation and successful restoration of abandoned mine spoils. Herein, we conducted a glasshouse experiment to screen mycorrhizal fungi and rhizobacteria capable of improving the health and growth of white spruce seedlings growing directly on waste rocks (WRs) or fine tailings (FTs) from the Sigma-Lamaque gold mine located in the Canadian Abitibi region. After 32 weeks, measurements of health, growth, and mycorrhizal colonization variables of seedlings were performed. Overall, symbionts isolated from roots of healthy white spruce seedlings growing on the mining site, especially
<i>Cadophora finlandia</i>
Cad. fin. MBN0213 GenBank No. KC840625 and
<i>Pseudomonas putida</i>
MBN0213 GenBank No. AY391278, were more efficient in enhancing seedling health and growth than allochthonous species and constitute promising microbial symbionts. In general, mycorrhizae promoted plant health and belowground development, while rhizobacteria enhanced aboveground plant biomass. The observed beneficial effects were substrate-, strain-, and/or strains combination-specific. Therefore, preliminary experiments in control conditions such as the one described here can be part of an efficient and integrated strategy to select ecologically well-adapted symbiotic microorganisms, critical for the success of a long-term revegetation program.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30233614</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Mycorrhizae and Rhizobacteria on Precambrian Rocky Gold Mine Tailings: I. Mine-Adapted Symbionts Promote White Spruce Health and Growth.</ArticleTitle>
<Pagination>
<MedlinePgn>1267</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01267</ELocationID>
<Abstract>
<AbstractText>White spruce [
<i>Picea glauca</i>
(Moench) Voss] is a commercially valuable boreal tree that has been known for its ability to colonize deglaciated rock tailings. Over the last decade, there has been an increasing interest in using this species for the revegetation and successful restoration of abandoned mine spoils. Herein, we conducted a glasshouse experiment to screen mycorrhizal fungi and rhizobacteria capable of improving the health and growth of white spruce seedlings growing directly on waste rocks (WRs) or fine tailings (FTs) from the Sigma-Lamaque gold mine located in the Canadian Abitibi region. After 32 weeks, measurements of health, growth, and mycorrhizal colonization variables of seedlings were performed. Overall, symbionts isolated from roots of healthy white spruce seedlings growing on the mining site, especially
<i>Cadophora finlandia</i>
Cad. fin. MBN0213 GenBank No. KC840625 and
<i>Pseudomonas putida</i>
MBN0213 GenBank No. AY391278, were more efficient in enhancing seedling health and growth than allochthonous species and constitute promising microbial symbionts. In general, mycorrhizae promoted plant health and belowground development, while rhizobacteria enhanced aboveground plant biomass. The observed beneficial effects were substrate-, strain-, and/or strains combination-specific. Therefore, preliminary experiments in control conditions such as the one described here can be part of an efficient and integrated strategy to select ecologically well-adapted symbiotic microorganisms, critical for the success of a long-term revegetation program.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nadeau</LastName>
<ForeName>Martin B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Viridis Terra Innovations Inc., Sainte-Marie, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laur</LastName>
<ForeName>Joan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khasa</LastName>
<ForeName>Damase P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Centre for Forest Research and Institute of Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Picea glauca</Keyword>
<Keyword MajorTopicYN="N">mine waste</Keyword>
<Keyword MajorTopicYN="N">mycorrhizae</Keyword>
<Keyword MajorTopicYN="N">plant growth</Keyword>
<Keyword MajorTopicYN="N">plant health</Keyword>
<Keyword MajorTopicYN="N">rhizobacteria</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30233614</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01267</ArticleId>
<ArticleId IdType="pmc">PMC6130231</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Jun 13;417(6890):729-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12066181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2003;41:271-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2005;12(1):34-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15768739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Jan;8(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16343316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):646-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2007 Feb;91(2):105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17013548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 May;73(9):3019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2008 Oct;56(3):513-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2008 Sep;112(Pt 9):1069-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18692376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2009 Sep;77(2):153-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19647283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2009 Aug;17(8):378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19660952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2009 Dec;113(Pt 12):1377-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19770041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Mar;13(3):394-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 May;90(3):1037-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21327414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Jul;115(7):569-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21724164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2013 Mar-Apr;42(2):351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23673827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Aug;24(6):431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24424508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Reg Sci Technol. 2013 Dec;96:129-137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25096975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2015;17(7):716-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25976886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):890-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26084921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Nov 11;11(11):e0166420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27835688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Sep 03;9:1268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30233615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1994 Oct;44(4):832-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7981108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000743 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000743 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30233614
   |texte=   Mycorrhizae and Rhizobacteria on Precambrian Rocky Gold Mine Tailings: I. Mine-Adapted Symbionts Promote White Spruce Health and Growth.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:30233614" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020