Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress.

Identifieur interne : 000518 ( Main/Curation ); précédent : 000517; suivant : 000519

The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress.

Auteurs : Gabriela Quiroga [Espagne] ; Gorka Erice [Espagne] ; Lei Ding [Belgique] ; François Chaumont [Belgique] ; Ricardo Aroca [Espagne] ; Juan Manuel Ruiz-Lozano [Espagne]

Source :

RBID : pubmed:30916398

Descripteurs français

English descriptors

Abstract

Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell-to-cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf ) and cell hydraulic conductivity (Lpc ) were measured in root protoplast and intact cortex cells of AM and non-AM plants subjected or not to water stress. Results showed that cells from droughted-AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non-AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s-1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.

DOI: 10.1111/pce.13551
PubMed: 30916398

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30916398

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress.</title>
<author>
<name sortKey="Quiroga, Gabriela" sort="Quiroga, Gabriela" uniqKey="Quiroga G" first="Gabriela" last="Quiroga">Gabriela Quiroga</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Erice, Gorka" sort="Erice, Gorka" uniqKey="Erice G" first="Gorka" last="Erice">Gorka Erice</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ding, Lei" sort="Ding, Lei" uniqKey="Ding L" first="Lei" last="Ding">Lei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chaumont, Francois" sort="Chaumont, Francois" uniqKey="Chaumont F" first="François" last="Chaumont">François Chaumont</name>
<affiliation wicri:level="1">
<nlm:affiliation>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30916398</idno>
<idno type="pmid">30916398</idno>
<idno type="doi">10.1111/pce.13551</idno>
<idno type="wicri:Area/Main/Corpus">000518</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000518</idno>
<idno type="wicri:Area/Main/Curation">000518</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000518</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress.</title>
<author>
<name sortKey="Quiroga, Gabriela" sort="Quiroga, Gabriela" uniqKey="Quiroga G" first="Gabriela" last="Quiroga">Gabriela Quiroga</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Erice, Gorka" sort="Erice, Gorka" uniqKey="Erice G" first="Gorka" last="Erice">Gorka Erice</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ding, Lei" sort="Ding, Lei" uniqKey="Ding L" first="Lei" last="Ding">Lei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chaumont, Francois" sort="Chaumont, Francois" uniqKey="Chaumont F" first="François" last="Chaumont">François Chaumont</name>
<affiliation wicri:level="1">
<nlm:affiliation>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aquaporins (genetics)</term>
<term>Aquaporins (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Dehydration (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Permeability (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (MeSH)</term>
<term>Plant Stomata (physiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (metabolism)</term>
<term>Zea mays (genetics)</term>
<term>Zea mays (growth & development)</term>
<term>Zea mays (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aquaporines (génétique)</term>
<term>Aquaporines (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Déshydratation (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Perméabilité (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Pousses de plante (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stomates de plante (physiologie)</term>
<term>Symbiose (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Transport biologique (MeSH)</term>
<term>Zea mays (croissance et développement)</term>
<term>Zea mays (génétique)</term>
<term>Zea mays (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aquaporins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aquaporins</term>
<term>Plant Proteins</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aquaporines</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aquaporines</term>
<term>Eau</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Stomata</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Biomass</term>
<term>Dehydration</term>
<term>Droughts</term>
<term>Gene Expression Regulation, Plant</term>
<term>Permeability</term>
<term>Phosphorylation</term>
<term>Photosynthesis</term>
<term>Plant Shoots</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Déshydratation</term>
<term>Perméabilité</term>
<term>Phosphorylation</term>
<term>Photosynthèse</term>
<term>Pousses de plante</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Symbiose</term>
<term>Sécheresses</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell-to-cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (P
<sub>f</sub>
) and cell hydraulic conductivity (L
<sub>pc</sub>
) were measured in root protoplast and intact cortex cells of AM and non-AM plants subjected or not to water stress. Results showed that cells from droughted-AM roots maintained P
<sub>f</sub>
and L
<sub>pc</sub>
values of nonstressed plants, whereas in non-AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and P
<sub>f</sub>
values higher than 12 μm s
<sup>-1</sup>
were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30916398</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>42</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress.</ArticleTitle>
<Pagination>
<MedlinePgn>2274-2290</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13551</ELocationID>
<Abstract>
<AbstractText>Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell-to-cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (P
<sub>f</sub>
) and cell hydraulic conductivity (L
<sub>pc</sub>
) were measured in root protoplast and intact cortex cells of AM and non-AM plants subjected or not to water stress. Results showed that cells from droughted-AM roots maintained P
<sub>f</sub>
and L
<sub>pc</sub>
values of nonstressed plants, whereas in non-AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and P
<sub>f</sub>
values higher than 12 μm s
<sup>-1</sup>
were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Quiroga</LastName>
<ForeName>Gabriela</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Erice</LastName>
<ForeName>Gorka</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0001-5429-9624</Identifier>
<AffiliationInfo>
<Affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chaumont</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aroca</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0003-2402-2063</Identifier>
<AffiliationInfo>
<Affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Lozano</LastName>
<ForeName>Juan Manuel</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">0000-0002-4473-5434</Identifier>
<AffiliationInfo>
<Affiliation>Departmento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020346">Aquaporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020346" MajorTopicYN="N">Aquaporins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010539" MajorTopicYN="N">Permeability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">aquaporins</Keyword>
<Keyword MajorTopicYN="Y">arbuscular mycorrhizal symbiosis</Keyword>
<Keyword MajorTopicYN="Y">cell hydraulic conductivity</Keyword>
<Keyword MajorTopicYN="Y">cell pressure probe</Keyword>
<Keyword MajorTopicYN="Y">photosynthesis</Keyword>
<Keyword MajorTopicYN="Y">protoplasts</Keyword>
<Keyword MajorTopicYN="Y">water permeability</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30916398</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13551</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000518 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000518 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30916398
   |texte=   The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:30916398" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020