Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The genetic program at the root of the biological stock exchange.

Identifieur interne : 000416 ( Main/Curation ); précédent : 000415; suivant : 000417

The genetic program at the root of the biological stock exchange.

Auteurs : Simon R. Law [Suède]

Source :

RBID : pubmed:31215061

Descripteurs français

English descriptors

Abstract

Beneath the gardens, farmlands and forest floors that surround us, a hidden world blooms in careful cooperation and intense competition. The mutualistic symbiosis of the thread-like hyphae of fungi and plant roots (collectively termed mycorrhizae from the Greek mýkēs - meaning 'fungus', and rhiza - for 'root') is present in the vast majority of plant species. As with most intimate relationships, this symbiosis functions on a principle of 'give and take'. As an autotroph, the plant is able to synthesize all the sugars it requires through photosynthesis; however, its immobility hinders its capacity to forage for nutrients vital for its growth and survival. With an expansive network of hyphae, the heterotrophic fungus is able to locate and remobilize water and nutrients, such as phosphorus (P) and nitrogen (N), and barter them for precious sugars with the plant. An article in this issue of Physiologia Plantarum (Zhao et al. 2019) describes alterations in the genetic programming that takes place in the plant root upon the establishment of this fascinating relationship, which has profound implications for plant productivity and soil management methods.

DOI: 10.1111/ppl.12980
PubMed: 31215061

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31215061

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The genetic program at the root of the biological stock exchange.</title>
<author>
<name sortKey="Law, Simon R" sort="Law, Simon R" uniqKey="Law S" first="Simon R" last="Law">Simon R. Law</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå University, 907 36 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå University, 907 36 Umeå</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31215061</idno>
<idno type="pmid">31215061</idno>
<idno type="doi">10.1111/ppl.12980</idno>
<idno type="wicri:Area/Main/Corpus">000416</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000416</idno>
<idno type="wicri:Area/Main/Curation">000416</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000416</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The genetic program at the root of the biological stock exchange.</title>
<author>
<name sortKey="Law, Simon R" sort="Law, Simon R" uniqKey="Law S" first="Simon R" last="Law">Simon R. Law</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå University, 907 36 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå University, 907 36 Umeå</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Mycorhizes (physiologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Symbiose (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Beneath the gardens, farmlands and forest floors that surround us, a hidden world blooms in careful cooperation and intense competition. The mutualistic symbiosis of the thread-like hyphae of fungi and plant roots (collectively termed mycorrhizae from the Greek mýkēs - meaning 'fungus', and rhiza - for 'root') is present in the vast majority of plant species. As with most intimate relationships, this symbiosis functions on a principle of 'give and take'. As an autotroph, the plant is able to synthesize all the sugars it requires through photosynthesis; however, its immobility hinders its capacity to forage for nutrients vital for its growth and survival. With an expansive network of hyphae, the heterotrophic fungus is able to locate and remobilize water and nutrients, such as phosphorus (P) and nitrogen (N), and barter them for precious sugars with the plant. An article in this issue of Physiologia Plantarum (Zhao et al. 2019) describes alterations in the genetic programming that takes place in the plant root upon the establishment of this fascinating relationship, which has profound implications for plant productivity and soil management methods.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31215061</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>166</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>The genetic program at the root of the biological stock exchange.</ArticleTitle>
<Pagination>
<MedlinePgn>709-711</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppl.12980</ELocationID>
<Abstract>
<AbstractText>Beneath the gardens, farmlands and forest floors that surround us, a hidden world blooms in careful cooperation and intense competition. The mutualistic symbiosis of the thread-like hyphae of fungi and plant roots (collectively termed mycorrhizae from the Greek mýkēs - meaning 'fungus', and rhiza - for 'root') is present in the vast majority of plant species. As with most intimate relationships, this symbiosis functions on a principle of 'give and take'. As an autotroph, the plant is able to synthesize all the sugars it requires through photosynthesis; however, its immobility hinders its capacity to forage for nutrients vital for its growth and survival. With an expansive network of hyphae, the heterotrophic fungus is able to locate and remobilize water and nutrients, such as phosphorus (P) and nitrogen (N), and barter them for precious sugars with the plant. An article in this issue of Physiologia Plantarum (Zhao et al. 2019) describes alterations in the genetic programming that takes place in the plant root upon the establishment of this fascinating relationship, which has profound implications for plant productivity and soil management methods.</AbstractText>
<CopyrightInformation>© 2019 Scandinavian Plant Physiology Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Law</LastName>
<ForeName>Simon R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå University, 907 36 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31215061</ArticleId>
<ArticleId IdType="doi">10.1111/ppl.12980</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000416 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000416 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31215061
   |texte=   The genetic program at the root of the biological stock exchange.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:31215061" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020