Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots.

Identifieur interne : 003A07 ( Main/Corpus ); précédent : 003A06; suivant : 003A08

Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots.

Auteurs : Bettina Hause ; Walter Maier ; Otto Miersch ; Robert Kramell ; Dieter Strack

Source :

RBID : pubmed:12427988

English descriptors

Abstract

Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells. The concomitant gene expression indicates that jasmonates are generated and act within arbuscule-containing cells. By use of a near-synchronous mycorrhization, analysis of temporal expression patterns showed the occurrence of transcript accumulation 4 to 6 d after the appearance of the first arbuscules. This suggests that the endogenous rise in jasmonates might be related to the fully established symbiosis rather than to the recognition of interacting partners or to the onset of interaction. Because the plant supplies the fungus with carbohydrates, a model is proposed in which the induction of JA biosynthesis in colonized roots is linked to the stronger sink function of mycorrhizal roots compared with nonmycorrhizal roots.

DOI: 10.1104/pp.006007
PubMed: 12427988
PubMed Central: PMC166642

Links to Exploration step

pubmed:12427988

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots.</title>
<author>
<name sortKey="Hause, Bettina" sort="Hause, Bettina" uniqKey="Hause B" first="Bettina" last="Hause">Bettina Hause</name>
<affiliation>
<nlm:affiliation>Abteilung Sekundärstoffwechsel, Leibniz-Institut für Pflanzenbiochemie, D-06120 Halle, Saale, Germany. bhause@ipb-halle.de</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maier, Walter" sort="Maier, Walter" uniqKey="Maier W" first="Walter" last="Maier">Walter Maier</name>
</author>
<author>
<name sortKey="Miersch, Otto" sort="Miersch, Otto" uniqKey="Miersch O" first="Otto" last="Miersch">Otto Miersch</name>
</author>
<author>
<name sortKey="Kramell, Robert" sort="Kramell, Robert" uniqKey="Kramell R" first="Robert" last="Kramell">Robert Kramell</name>
</author>
<author>
<name sortKey="Strack, Dieter" sort="Strack, Dieter" uniqKey="Strack D" first="Dieter" last="Strack">Dieter Strack</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12427988</idno>
<idno type="pmid">12427988</idno>
<idno type="doi">10.1104/pp.006007</idno>
<idno type="pmc">PMC166642</idno>
<idno type="wicri:Area/Main/Corpus">003A07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003A07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots.</title>
<author>
<name sortKey="Hause, Bettina" sort="Hause, Bettina" uniqKey="Hause B" first="Bettina" last="Hause">Bettina Hause</name>
<affiliation>
<nlm:affiliation>Abteilung Sekundärstoffwechsel, Leibniz-Institut für Pflanzenbiochemie, D-06120 Halle, Saale, Germany. bhause@ipb-halle.de</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maier, Walter" sort="Maier, Walter" uniqKey="Maier W" first="Walter" last="Maier">Walter Maier</name>
</author>
<author>
<name sortKey="Miersch, Otto" sort="Miersch, Otto" uniqKey="Miersch O" first="Otto" last="Miersch">Otto Miersch</name>
</author>
<author>
<name sortKey="Kramell, Robert" sort="Kramell, Robert" uniqKey="Kramell R" first="Robert" last="Kramell">Robert Kramell</name>
</author>
<author>
<name sortKey="Strack, Dieter" sort="Strack, Dieter" uniqKey="Strack D" first="Dieter" last="Strack">Dieter Strack</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyclopentanes (metabolism)</term>
<term>Fatty Acids, Unsaturated (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Hordeum (genetics)</term>
<term>Hordeum (metabolism)</term>
<term>Hordeum (microbiology)</term>
<term>Immunohistochemistry (MeSH)</term>
<term>In Situ Hybridization (MeSH)</term>
<term>Intramolecular Oxidoreductases (genetics)</term>
<term>Intramolecular Oxidoreductases (metabolism)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Oxylipins (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Intramolecular Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclopentanes</term>
<term>Fatty Acids, Unsaturated</term>
<term>Intramolecular Oxidoreductases</term>
<term>Plant Proteins</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hordeum</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hordeum</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hordeum</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Immunohistochemistry</term>
<term>In Situ Hybridization</term>
<term>Oxylipins</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells. The concomitant gene expression indicates that jasmonates are generated and act within arbuscule-containing cells. By use of a near-synchronous mycorrhization, analysis of temporal expression patterns showed the occurrence of transcript accumulation 4 to 6 d after the appearance of the first arbuscules. This suggests that the endogenous rise in jasmonates might be related to the fully established symbiosis rather than to the recognition of interacting partners or to the onset of interaction. Because the plant supplies the fungus with carbohydrates, a model is proposed in which the induction of JA biosynthesis in colonized roots is linked to the stronger sink function of mycorrhizal roots compared with nonmycorrhizal roots.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12427988</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>03</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>130</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2002</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots.</ArticleTitle>
<Pagination>
<MedlinePgn>1213-20</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells. The concomitant gene expression indicates that jasmonates are generated and act within arbuscule-containing cells. By use of a near-synchronous mycorrhization, analysis of temporal expression patterns showed the occurrence of transcript accumulation 4 to 6 d after the appearance of the first arbuscules. This suggests that the endogenous rise in jasmonates might be related to the fully established symbiosis rather than to the recognition of interacting partners or to the onset of interaction. Because the plant supplies the fungus with carbohydrates, a model is proposed in which the induction of JA biosynthesis in colonized roots is linked to the stronger sink function of mycorrhizal roots compared with nonmycorrhizal roots.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hause</LastName>
<ForeName>Bettina</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Abteilung Sekundärstoffwechsel, Leibniz-Institut für Pflanzenbiochemie, D-06120 Halle, Saale, Germany. bhause@ipb-halle.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maier</LastName>
<ForeName>Walter</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miersch</LastName>
<ForeName>Otto</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kramell</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strack</LastName>
<ForeName>Dieter</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005231">Fatty Acids, Unsaturated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C109805">JIP23 protein, Hordeum vulgare</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>67204-66-4</RegistryNumber>
<NameOfSubstance UI="C025999">12-oxophytodienoic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.3.-</RegistryNumber>
<NameOfSubstance UI="D019746">Intramolecular Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.3.99.6</RegistryNumber>
<NameOfSubstance UI="C021377">hydroperoxide isomerase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005231" MajorTopicYN="N">Fatty Acids, Unsaturated</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019746" MajorTopicYN="N">Intramolecular Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12427988</ArticleId>
<ArticleId IdType="doi">10.1104/pp.006007</ArticleId>
<ArticleId IdType="pmc">PMC166642</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 2002;72:165-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jan;21(2):199-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10743660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):177-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):144-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 9;92(10):4114-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1999 Jun;2(3):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10375568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:355-381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Sep 8;414(2):197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9315685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Jan 15;251(1-2):36-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9492266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Oct;24(1):113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Aug;1(4):360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:361-389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 May;108(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Mar 7;1477(1-2):112-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 May;19(2):193-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1377959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1996 Jul;37(5):641-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8819310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 May 1;218(2):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8074303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Nov;115(3):1057-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9390438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1998 Oct;206(2):167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9736997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1998 Feb;47(4):539-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003A07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12427988
   |texte=   Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:12427988" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020