Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea.

Identifieur interne : 003963 ( Main/Corpus ); précédent : 003962; suivant : 003964

Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea.

Auteurs : M'Barek Tamasloukht ; Nathalie Séjalon-Delmas ; Astrid Kluever ; Alain Jauneau ; Christophe Roux ; Guillaume Bécard ; Philipp Franken

Source :

RBID : pubmed:12644696

English descriptors

Abstract

During spore germination, arbuscular mycorrhizal (AM) fungi show limited hyphal development in the absence of a host plant (asymbiotic). In the presence of root exudates, they switch to a new developmental stage (presymbiotic) characterized by extensive hyphal branching. Presymbiotic branching of the AM fungus Gigaspora rosea was induced in liquid medium by a semipurified exudate fraction from carrot (Daucus carota) root organ cultures. Changes in RNA accumulation patterns were monitored by differential display analysis. Differentially appearing cDNA fragments were cloned and further analyzed. Five cDNA fragments could be identified that show induced RNA accumulation 1 h after the addition of root exudate. Sequence similarities of two fragments to mammalian Nco4 and mitochondrial rRNA genes suggested that root exudates could influence fungal respiratory activity. To support this hypothesis, additional putative mitochondrial related-genes were shown to be induced by root exudates. These genes were identified after subtractive hybridization and putatively encode a pyruvate carboxylase and a mitochondrial ADP/ATP translocase. The gene GrosPyc1 for the pyruvate carboxylase was studied in more detail by cloning a cDNA and by quantifying its RNA accumulation. The hypothesis that respiratory activity of AM fungi is stimulated by root exudates was confirmed by physiological and cytological analyses in G. rosea and Glomus intraradices. Oxygen consumption and reducing activity of both fungi was induced after 3 and 2 h of exposition with the root factor, respectively, and the first respiration activation was detected in G. intraradices after approximately 90 min. In addition, changes in mitochondrial morphology, orientation, and overall biomass were detected in G. rosea after 4 h. In summary, the root-exuded factor rapidly induces the expression of certain fungal genes and, in turn, fungal respiratory activity before intense branching. This defines the developmental switch from asymbiosis to presymbiosis, first by gene activation (0.5-1 h), subsequently on the physiological level (1.5-3 h), and finally as a morphological response (after 5 h).

DOI: 10.1104/pp.012898
PubMed: 12644696
PubMed Central: PMC166906

Links to Exploration step

pubmed:12644696

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea.</title>
<author>
<name sortKey="Tamasloukht, M Barek" sort="Tamasloukht, M Barek" uniqKey="Tamasloukht M" first="M'Barek" last="Tamasloukht">M'Barek Tamasloukht</name>
<affiliation>
<nlm:affiliation>Max-Planck-Institut für Terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Philipps-Universität, Karl-von-Frisch-Strasse, 35043 Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sejalon Delmas, Nathalie" sort="Sejalon Delmas, Nathalie" uniqKey="Sejalon Delmas N" first="Nathalie" last="Séjalon-Delmas">Nathalie Séjalon-Delmas</name>
</author>
<author>
<name sortKey="Kluever, Astrid" sort="Kluever, Astrid" uniqKey="Kluever A" first="Astrid" last="Kluever">Astrid Kluever</name>
</author>
<author>
<name sortKey="Jauneau, Alain" sort="Jauneau, Alain" uniqKey="Jauneau A" first="Alain" last="Jauneau">Alain Jauneau</name>
</author>
<author>
<name sortKey="Roux, Christophe" sort="Roux, Christophe" uniqKey="Roux C" first="Christophe" last="Roux">Christophe Roux</name>
</author>
<author>
<name sortKey="Becard, Guillaume" sort="Becard, Guillaume" uniqKey="Becard G" first="Guillaume" last="Bécard">Guillaume Bécard</name>
</author>
<author>
<name sortKey="Franken, Philipp" sort="Franken, Philipp" uniqKey="Franken P" first="Philipp" last="Franken">Philipp Franken</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12644696</idno>
<idno type="pmid">12644696</idno>
<idno type="doi">10.1104/pp.012898</idno>
<idno type="pmc">PMC166906</idno>
<idno type="wicri:Area/Main/Corpus">003963</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003963</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea.</title>
<author>
<name sortKey="Tamasloukht, M Barek" sort="Tamasloukht, M Barek" uniqKey="Tamasloukht M" first="M'Barek" last="Tamasloukht">M'Barek Tamasloukht</name>
<affiliation>
<nlm:affiliation>Max-Planck-Institut für Terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Philipps-Universität, Karl-von-Frisch-Strasse, 35043 Marburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sejalon Delmas, Nathalie" sort="Sejalon Delmas, Nathalie" uniqKey="Sejalon Delmas N" first="Nathalie" last="Séjalon-Delmas">Nathalie Séjalon-Delmas</name>
</author>
<author>
<name sortKey="Kluever, Astrid" sort="Kluever, Astrid" uniqKey="Kluever A" first="Astrid" last="Kluever">Astrid Kluever</name>
</author>
<author>
<name sortKey="Jauneau, Alain" sort="Jauneau, Alain" uniqKey="Jauneau A" first="Alain" last="Jauneau">Alain Jauneau</name>
</author>
<author>
<name sortKey="Roux, Christophe" sort="Roux, Christophe" uniqKey="Roux C" first="Christophe" last="Roux">Christophe Roux</name>
</author>
<author>
<name sortKey="Becard, Guillaume" sort="Becard, Guillaume" uniqKey="Becard G" first="Guillaume" last="Bécard">Guillaume Bécard</name>
</author>
<author>
<name sortKey="Franken, Philipp" sort="Franken, Philipp" uniqKey="Franken P" first="Philipp" last="Franken">Philipp Franken</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Respiration (physiology)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Complementary (chemistry)</term>
<term>DNA, Complementary (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Hyphae (genetics)</term>
<term>Hyphae (growth & development)</term>
<term>Hyphae (metabolism)</term>
<term>Mitochondria (genetics)</term>
<term>Mitochondria (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Pyruvate Carboxylase (genetics)</term>
<term>Pyruvate Carboxylase (metabolism)</term>
<term>RNA, Fungal (genetics)</term>
<term>RNA, Fungal (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Spores (growth & development)</term>
<term>Symbiosis (genetics)</term>
<term>Symbiosis (physiology)</term>
<term>Transcriptional Activation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>Pyruvate Carboxylase</term>
<term>RNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hyphae</term>
<term>Mitochondria</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Hyphae</term>
<term>Mycorrhizae</term>
<term>Spores</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hyphae</term>
<term>Mitochondria</term>
<term>Plant Roots</term>
<term>Pyruvate Carboxylase</term>
<term>RNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Respiration</term>
<term>Mycorrhizae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Sequence Analysis, DNA</term>
<term>Transcriptional Activation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During spore germination, arbuscular mycorrhizal (AM) fungi show limited hyphal development in the absence of a host plant (asymbiotic). In the presence of root exudates, they switch to a new developmental stage (presymbiotic) characterized by extensive hyphal branching. Presymbiotic branching of the AM fungus Gigaspora rosea was induced in liquid medium by a semipurified exudate fraction from carrot (Daucus carota) root organ cultures. Changes in RNA accumulation patterns were monitored by differential display analysis. Differentially appearing cDNA fragments were cloned and further analyzed. Five cDNA fragments could be identified that show induced RNA accumulation 1 h after the addition of root exudate. Sequence similarities of two fragments to mammalian Nco4 and mitochondrial rRNA genes suggested that root exudates could influence fungal respiratory activity. To support this hypothesis, additional putative mitochondrial related-genes were shown to be induced by root exudates. These genes were identified after subtractive hybridization and putatively encode a pyruvate carboxylase and a mitochondrial ADP/ATP translocase. The gene GrosPyc1 for the pyruvate carboxylase was studied in more detail by cloning a cDNA and by quantifying its RNA accumulation. The hypothesis that respiratory activity of AM fungi is stimulated by root exudates was confirmed by physiological and cytological analyses in G. rosea and Glomus intraradices. Oxygen consumption and reducing activity of both fungi was induced after 3 and 2 h of exposition with the root factor, respectively, and the first respiration activation was detected in G. intraradices after approximately 90 min. In addition, changes in mitochondrial morphology, orientation, and overall biomass were detected in G. rosea after 4 h. In summary, the root-exuded factor rapidly induces the expression of certain fungal genes and, in turn, fungal respiratory activity before intense branching. This defines the developmental switch from asymbiosis to presymbiosis, first by gene activation (0.5-1 h), subsequently on the physiological level (1.5-3 h), and finally as a morphological response (after 5 h).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12644696</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>06</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>131</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2003</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea.</ArticleTitle>
<Pagination>
<MedlinePgn>1468-78</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>During spore germination, arbuscular mycorrhizal (AM) fungi show limited hyphal development in the absence of a host plant (asymbiotic). In the presence of root exudates, they switch to a new developmental stage (presymbiotic) characterized by extensive hyphal branching. Presymbiotic branching of the AM fungus Gigaspora rosea was induced in liquid medium by a semipurified exudate fraction from carrot (Daucus carota) root organ cultures. Changes in RNA accumulation patterns were monitored by differential display analysis. Differentially appearing cDNA fragments were cloned and further analyzed. Five cDNA fragments could be identified that show induced RNA accumulation 1 h after the addition of root exudate. Sequence similarities of two fragments to mammalian Nco4 and mitochondrial rRNA genes suggested that root exudates could influence fungal respiratory activity. To support this hypothesis, additional putative mitochondrial related-genes were shown to be induced by root exudates. These genes were identified after subtractive hybridization and putatively encode a pyruvate carboxylase and a mitochondrial ADP/ATP translocase. The gene GrosPyc1 for the pyruvate carboxylase was studied in more detail by cloning a cDNA and by quantifying its RNA accumulation. The hypothesis that respiratory activity of AM fungi is stimulated by root exudates was confirmed by physiological and cytological analyses in G. rosea and Glomus intraradices. Oxygen consumption and reducing activity of both fungi was induced after 3 and 2 h of exposition with the root factor, respectively, and the first respiration activation was detected in G. intraradices after approximately 90 min. In addition, changes in mitochondrial morphology, orientation, and overall biomass were detected in G. rosea after 4 h. In summary, the root-exuded factor rapidly induces the expression of certain fungal genes and, in turn, fungal respiratory activity before intense branching. This defines the developmental switch from asymbiosis to presymbiosis, first by gene activation (0.5-1 h), subsequently on the physiological level (1.5-3 h), and finally as a morphological response (after 5 h).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tamasloukht</LastName>
<ForeName>M'Barek</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Philipps-Universität, Karl-von-Frisch-Strasse, 35043 Marburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Séjalon-Delmas</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kluever</LastName>
<ForeName>Astrid</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jauneau</LastName>
<ForeName>Alain</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roux</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bécard</LastName>
<ForeName>Guillaume</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Franken</LastName>
<ForeName>Philipp</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AJ419662</AccessionNumber>
<AccessionNumber>AJ419663</AccessionNumber>
<AccessionNumber>AJ419664</AccessionNumber>
<AccessionNumber>AJ419665</AccessionNumber>
<AccessionNumber>AJ419666</AccessionNumber>
<AccessionNumber>AJ419667</AccessionNumber>
<AccessionNumber>AJ419668</AccessionNumber>
<AccessionNumber>AJ419669</AccessionNumber>
<AccessionNumber>AJ419670</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.4.1.1</RegistryNumber>
<NameOfSubstance UI="D011766">Pyruvate Carboxylase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011766" MajorTopicYN="N">Pyruvate Carboxylase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013170" MajorTopicYN="N">Spores</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015533" MajorTopicYN="N">Transcriptional Activation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12644696</ArticleId>
<ArticleId IdType="doi">10.1104/pp.012898</ArticleId>
<ArticleId IdType="pmc">PMC166906</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jun;13(6):693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1993 Mar;3(3):266-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8485583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anat Rec. 1999 Aug 1;255(4):458-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Aug 12;1451(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:563-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Histochem Cytochem. 1976;9(3):1-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">792958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Apr;116(4):1279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9536044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1998 Jul;7(7):879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9691489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1997 Oct;22(2):103-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mamm Genome. 1999 May;10(5):506-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10337626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4138-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10759557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Sep 7;68(2):335-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3065148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Sep;55(9):2320-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1995 Jun 10;228(1):182-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8572283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Sep;256(1):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9341677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 Mar 20;206(2):261-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2541251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Aug;53(8):1928-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Dec;106(4):1541-1546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Apr 2;1504(2-3):179-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11245784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Jun 24;273(1):90-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10535912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2000 May;208(1-2):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10939635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1996 Aug;12(4):357-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8902363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb 1;116(2):777-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Oct;12(10):934-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1998 Feb;23(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Nov;41(5):669-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10645726</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003963 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003963 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12644696
   |texte=   Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:12644696" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020