Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition.

Identifieur interne : 003955 ( Main/Corpus ); précédent : 003954; suivant : 003956

Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition.

Auteurs : H. Bücking ; W. Heyser

Source :

RBID : pubmed:12682827

English descriptors

Abstract

Energy-dispersive X-ray microanalytical investigations and microautoradiographic studies were carried out to examine whether the uptake and transfer of phosphate (P) by an ectomycorrhizal fungus is affected by the carbohydrate supply of its host plant. For this purpose, non-mycorrhizal seedlings of Pinus sylvestris L. and plants inoculated with the ectomycorrhizal basidiomycete Suillus bovinus (L. ex Fr.) Kuntze were placed in the dark for 7 days in advance of a P supply. The subcellular element distribution and the uptake and distribution of (33)P was analyzed in non-mycorrhizal and mycorrhizal roots of these plants and compared with plants kept constantly under normal light conditions (control plants). The results show that placing non-mycorrhizal plants in the dark in advance of the nutrient supply led to (1) a reduction of the subcellular contents of P, S and K, but to an increase in the cytoplasmic Na content, and (2) an increase of (33)P absorption and translocation to the shoot. It can be assumed that this increased inflow of (33)P in non-mycorrhizal plants was due to P starvation after suppressed photosynthesis and reduced respiration of these plants. The suppression of photosynthesis by an ectomycorrhizal host plant and the resulting lower carbohydrate supply conditions for the ectomycorrhizal fungus led to (1) a decrease of P absorption by the mycobiont, (2) a change of the P allocation in the fungal cell compartments of an ectomycorrhizal root, and (3) a reduction of P transfer to the host plant. However, microautoradiographic studies revealed that, under these conditions, P was also absorbed by the mycorrhizal fungus and translocated via the Hartig net to the host plant. In mycorrhizal roots of plants placed in the dark in advance of the nutrient supply, the cytoplasmic P content of the Hartig net was reduced and, instead, a high number of polyphosphate granules could be detected within the hyphae. The results indicate that the exchange processes between the symbionts in a mycorrhiza are possibly linked and that P uptake and translocation by an ectomycorrhizal fungus is also regulated by the carbohydrate supply of its host plant.

DOI: 10.1007/s00572-002-0196-3
PubMed: 12682827

Links to Exploration step

pubmed:12682827

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition.</title>
<author>
<name sortKey="Bucking, H" sort="Bucking, H" uniqKey="Bucking H" first="H" last="Bücking">H. Bücking</name>
<affiliation>
<nlm:affiliation>University of Bremen, Center for Environmental Research and Technology, Leobenerstrasse, 28359 Bremen, Germany. heibueck@uft.uni-bremen.de</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Heyser, W" sort="Heyser, W" uniqKey="Heyser W" first="W" last="Heyser">W. Heyser</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12682827</idno>
<idno type="pmid">12682827</idno>
<idno type="doi">10.1007/s00572-002-0196-3</idno>
<idno type="wicri:Area/Main/Corpus">003955</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003955</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition.</title>
<author>
<name sortKey="Bucking, H" sort="Bucking, H" uniqKey="Bucking H" first="H" last="Bücking">H. Bücking</name>
<affiliation>
<nlm:affiliation>University of Bremen, Center for Environmental Research and Technology, Leobenerstrasse, 28359 Bremen, Germany. heibueck@uft.uni-bremen.de</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Heyser, W" sort="Heyser, W" uniqKey="Heyser W" first="W" last="Heyser">W. Heyser</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="ISSN">0940-6360</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (physiology)</term>
<term>Light (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphates (physiology)</term>
<term>Photosynthesis (physiology)</term>
<term>Pinus (microbiology)</term>
<term>Pinus (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Photosynthesis</term>
<term>Pinus</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Energy-dispersive X-ray microanalytical investigations and microautoradiographic studies were carried out to examine whether the uptake and transfer of phosphate (P) by an ectomycorrhizal fungus is affected by the carbohydrate supply of its host plant. For this purpose, non-mycorrhizal seedlings of Pinus sylvestris L. and plants inoculated with the ectomycorrhizal basidiomycete Suillus bovinus (L. ex Fr.) Kuntze were placed in the dark for 7 days in advance of a P supply. The subcellular element distribution and the uptake and distribution of (33)P was analyzed in non-mycorrhizal and mycorrhizal roots of these plants and compared with plants kept constantly under normal light conditions (control plants). The results show that placing non-mycorrhizal plants in the dark in advance of the nutrient supply led to (1) a reduction of the subcellular contents of P, S and K, but to an increase in the cytoplasmic Na content, and (2) an increase of (33)P absorption and translocation to the shoot. It can be assumed that this increased inflow of (33)P in non-mycorrhizal plants was due to P starvation after suppressed photosynthesis and reduced respiration of these plants. The suppression of photosynthesis by an ectomycorrhizal host plant and the resulting lower carbohydrate supply conditions for the ectomycorrhizal fungus led to (1) a decrease of P absorption by the mycobiont, (2) a change of the P allocation in the fungal cell compartments of an ectomycorrhizal root, and (3) a reduction of P transfer to the host plant. However, microautoradiographic studies revealed that, under these conditions, P was also absorbed by the mycorrhizal fungus and translocated via the Hartig net to the host plant. In mycorrhizal roots of plants placed in the dark in advance of the nutrient supply, the cytoplasmic P content of the Hartig net was reduced and, instead, a high number of polyphosphate granules could be detected within the hyphae. The results indicate that the exchange processes between the symbionts in a mycorrhiza are possibly linked and that P uptake and translocation by an ectomycorrhizal fungus is also regulated by the carbohydrate supply of its host plant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12682827</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2006</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0940-6360</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2003</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition.</ArticleTitle>
<Pagination>
<MedlinePgn>59-68</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Energy-dispersive X-ray microanalytical investigations and microautoradiographic studies were carried out to examine whether the uptake and transfer of phosphate (P) by an ectomycorrhizal fungus is affected by the carbohydrate supply of its host plant. For this purpose, non-mycorrhizal seedlings of Pinus sylvestris L. and plants inoculated with the ectomycorrhizal basidiomycete Suillus bovinus (L. ex Fr.) Kuntze were placed in the dark for 7 days in advance of a P supply. The subcellular element distribution and the uptake and distribution of (33)P was analyzed in non-mycorrhizal and mycorrhizal roots of these plants and compared with plants kept constantly under normal light conditions (control plants). The results show that placing non-mycorrhizal plants in the dark in advance of the nutrient supply led to (1) a reduction of the subcellular contents of P, S and K, but to an increase in the cytoplasmic Na content, and (2) an increase of (33)P absorption and translocation to the shoot. It can be assumed that this increased inflow of (33)P in non-mycorrhizal plants was due to P starvation after suppressed photosynthesis and reduced respiration of these plants. The suppression of photosynthesis by an ectomycorrhizal host plant and the resulting lower carbohydrate supply conditions for the ectomycorrhizal fungus led to (1) a decrease of P absorption by the mycobiont, (2) a change of the P allocation in the fungal cell compartments of an ectomycorrhizal root, and (3) a reduction of P transfer to the host plant. However, microautoradiographic studies revealed that, under these conditions, P was also absorbed by the mycorrhizal fungus and translocated via the Hartig net to the host plant. In mycorrhizal roots of plants placed in the dark in advance of the nutrient supply, the cytoplasmic P content of the Hartig net was reduced and, instead, a high number of polyphosphate granules could be detected within the hyphae. The results indicate that the exchange processes between the symbionts in a mycorrhiza are possibly linked and that P uptake and translocation by an ectomycorrhizal fungus is also regulated by the carbohydrate supply of its host plant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bücking</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>University of Bremen, Center for Environmental Research and Technology, Leobenerstrasse, 28359 Bremen, Germany. heibueck@uft.uni-bremen.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heyser</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2002</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2001</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2001</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12682827</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-002-0196-3</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003955 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003955 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12682827
   |texte=   Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:12682827" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020