Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Factors influencing spatial variability in nitrogen processing in nitrogen-saturated soils.

Identifieur interne : 003913 ( Main/Corpus ); précédent : 003912; suivant : 003914

Factors influencing spatial variability in nitrogen processing in nitrogen-saturated soils.

Auteurs : F S Gilliam ; C C Somerville ; N L Lyttle ; M B Adams

Source :

RBID : pubmed:12805879

English descriptors

Abstract

Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of N saturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturated soils from FEF, and how these effects varied between high N-processing vs. low N-processing soils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O1 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest rates of net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin, and N. Subsamples of mineral soil were extracted immediately with 1 N KCl and analyzed for NH4+ and NO3- to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence of nitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and 30 degrees C), followed by 1 N KCl extraction and analysis for NH4+ and NO3-. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubations at all temperatures supported earlier observations based on field incubations. At 30 degrees C, rates from N-treated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibiting no net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca to Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer.

DOI: 10.1100/tsw.2001.96
PubMed: 12805879
PubMed Central: PMC6084537

Links to Exploration step

pubmed:12805879

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Factors influencing spatial variability in nitrogen processing in nitrogen-saturated soils.</title>
<author>
<name sortKey="Gilliam, F S" sort="Gilliam, F S" uniqKey="Gilliam F" first="F S" last="Gilliam">F S Gilliam</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Marshall University, Huntington, WV 25755-2510, USA. gilliam@Marshall.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Somerville, C C" sort="Somerville, C C" uniqKey="Somerville C" first="C C" last="Somerville">C C Somerville</name>
</author>
<author>
<name sortKey="Lyttle, N L" sort="Lyttle, N L" uniqKey="Lyttle N" first="N L" last="Lyttle">N L Lyttle</name>
</author>
<author>
<name sortKey="Adams, M B" sort="Adams, M B" uniqKey="Adams M" first="M B" last="Adams">M B Adams</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:12805879</idno>
<idno type="pmid">12805879</idno>
<idno type="doi">10.1100/tsw.2001.96</idno>
<idno type="pmc">PMC6084537</idno>
<idno type="wicri:Area/Main/Corpus">003913</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003913</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Factors influencing spatial variability in nitrogen processing in nitrogen-saturated soils.</title>
<author>
<name sortKey="Gilliam, F S" sort="Gilliam, F S" uniqKey="Gilliam F" first="F S" last="Gilliam">F S Gilliam</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Marshall University, Huntington, WV 25755-2510, USA. gilliam@Marshall.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Somerville, C C" sort="Somerville, C C" uniqKey="Somerville C" first="C C" last="Somerville">C C Somerville</name>
</author>
<author>
<name sortKey="Lyttle, N L" sort="Lyttle, N L" uniqKey="Lyttle N" first="N L" last="Lyttle">N L Lyttle</name>
</author>
<author>
<name sortKey="Adams, M B" sort="Adams, M B" uniqKey="Adams M" first="M B" last="Adams">M B Adams</name>
</author>
</analytic>
<series>
<title level="j">TheScientificWorldJournal</title>
<idno type="eISSN">1537-744X</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Bacterial (genetics)</term>
<term>Ecosystem (MeSH)</term>
<term>Environmental Monitoring (methods)</term>
<term>Fertilizers (analysis)</term>
<term>Fresh Water (analysis)</term>
<term>Fresh Water (microbiology)</term>
<term>Genes, Bacterial (genetics)</term>
<term>Lignin (analysis)</term>
<term>Minerals (analysis)</term>
<term>Minerals (metabolism)</term>
<term>Nitrates (analysis)</term>
<term>Nitrates (metabolism)</term>
<term>Nitrites (analysis)</term>
<term>Nitrites (metabolism)</term>
<term>Nitrogen (analysis)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Compounds (analysis)</term>
<term>Nitrogen Compounds (metabolism)</term>
<term>Nitrosomonas (enzymology)</term>
<term>Nitrosomonas (genetics)</term>
<term>Nitrosomonas (isolation & purification)</term>
<term>Nucleic Acid Amplification Techniques (methods)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (genetics)</term>
<term>Soil (analysis)</term>
<term>Soil Microbiology (MeSH)</term>
<term>West Virginia (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Fertilizers</term>
<term>Lignin</term>
<term>Minerals</term>
<term>Nitrates</term>
<term>Nitrites</term>
<term>Nitrogen</term>
<term>Nitrogen Compounds</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Fresh Water</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Nitrosomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Bacterial</term>
<term>Nitrosomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Nitrosomonas</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Minerals</term>
<term>Nitrates</term>
<term>Nitrites</term>
<term>Nitrogen</term>
<term>Nitrogen Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Environmental Monitoring</term>
<term>Nucleic Acid Amplification Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fresh Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Oxidation-Reduction</term>
<term>Soil Microbiology</term>
<term>West Virginia</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of N saturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturated soils from FEF, and how these effects varied between high N-processing vs. low N-processing soils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O1 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest rates of net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin, and N. Subsamples of mineral soil were extracted immediately with 1 N KCl and analyzed for NH4+ and NO3- to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence of nitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and 30 degrees C), followed by 1 N KCl extraction and analysis for NH4+ and NO3-. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubations at all temperatures supported earlier observations based on field incubations. At 30 degrees C, rates from N-treated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibiting no net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca to Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12805879</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>04</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>08</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-744X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1 Suppl 2</Volume>
<PubDate>
<Year>2001</Year>
<Month>Oct</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>TheScientificWorldJournal</Title>
<ISOAbbreviation>ScientificWorldJournal</ISOAbbreviation>
</Journal>
<ArticleTitle>Factors influencing spatial variability in nitrogen processing in nitrogen-saturated soils.</ArticleTitle>
<Pagination>
<MedlinePgn>505-13</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of N saturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and nitrification in N-saturated soils from FEF, and how these effects varied between high N-processing vs. low N-processing soils collected from two watersheds, WS3 (fertilized with [NH4]2SO4) and WS4 (untreated control). Samples of forest floor material (O1 horizon) and mineral soil (to a 5-cm depth) were taken from three subplots within each of four plots that represented the extremes of highest and lowest rates of net N mineralization and nitrification (hereafter, high N and low N, respectively) of untreated WS4 and N-treated WS3: control/low N, control/high N, N-treated/low N, N-treated/high N. Forest floor material was analyzed for carbon (C), lignin, and N. Subsamples of mineral soil were extracted immediately with 1 N KCl and analyzed for NH4+ and NO3- to determine preincubation levels. Extracts were also analyzed for Mg, Ca, Al, and pH. To test the hypothesis that the lack of net nitrification observed in field incubations on the untreated/low N plot was the result of absence of nitrifier populations, we characterized the bacterial community involved in N cycling by amplification of amoA genes. Remaining soil was incubated for 28 d at three temperatures (10, 20, and 30 degrees C), followed by 1 N KCl extraction and analysis for NH4+ and NO3-. Net nitrification was essentially 100% of net N mineralization for all samples combined. Nitrification rates from lab incubations at all temperatures supported earlier observations based on field incubations. At 30 degrees C, rates from N-treated/high N were three times those of N-treated/low N. Highest rates were found for untreated/high N (two times greater than those of N-treated/high N), whereas untreated/low N exhibited no net nitrification. However, soils exhibiting no net nitrification tested positive for presence of nitrifying bacteria, causing us to reject our initial hypothesis. We hypothesize that nitrifier populations in such soil are being inhibited by a combination of low Ca to Al ratios in mineral soil and allelopathic interactions with mycorrhizae of ericaceous species in the herbaceous layer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gilliam</LastName>
<ForeName>F S</ForeName>
<Initials>FS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Marshall University, Huntington, WV 25755-2510, USA. gilliam@Marshall.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Somerville</LastName>
<ForeName>C C</ForeName>
<Initials>CC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lyttle</LastName>
<ForeName>N L</ForeName>
<Initials>NL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>M B</ForeName>
<Initials>MB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2001</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ScientificWorldJournal</MedlineTA>
<NlmUniqueID>101131163</NlmUniqueID>
<ISSNLinking>1537-744X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005308">Fertilizers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008903">Minerals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009566">Nitrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009573">Nitrites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017672">Nitrogen Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.7.3.-</RegistryNumber>
<NameOfSubstance UI="C045582">ammonia monooxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005308" MajorTopicYN="N">Fertilizers</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005618" MajorTopicYN="N">Fresh Water</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008903" MajorTopicYN="N">Minerals</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009566" MajorTopicYN="N">Nitrates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009573" MajorTopicYN="N">Nitrites</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017672" MajorTopicYN="N">Nitrogen Compounds</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009606" MajorTopicYN="N">Nitrosomonas</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021141" MajorTopicYN="N">Nucleic Acid Amplification Techniques</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014903" MajorTopicYN="N">West Virginia</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12805879</ArticleId>
<ArticleId IdType="doi">10.1100/tsw.2001.96</ArticleId>
<ArticleId IdType="pmc">PMC6084537</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003913 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003913 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:12805879
   |texte=   Factors influencing spatial variability in nitrogen processing in nitrogen-saturated soils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:12805879" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020