Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root.

Identifieur interne : 003671 ( Main/Corpus ); précédent : 003670; suivant : 003672

Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root.

Auteurs : Munir J. Mohammad ; W L Pan ; A C Kennedy

Source :

RBID : pubmed:15503187

English descriptors

Abstract

Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I-P); (3) no inoculation with no P addition (NI-P); (4) AMF inoculation with addition of 50 mg P (kg soil)(-1) (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)(-1) (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)(-1). The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.

DOI: 10.1007/s00572-004-0327-0
PubMed: 15503187

Links to Exploration step

pubmed:15503187

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root.</title>
<author>
<name sortKey="Mohammad, Munir J" sort="Mohammad, Munir J" uniqKey="Mohammad M" first="Munir J" last="Mohammad">Munir J. Mohammad</name>
<affiliation>
<nlm:affiliation>Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, Jordan. mrusan@just.edu.jo</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, W L" sort="Pan, W L" uniqKey="Pan W" first="W L" last="Pan">W L Pan</name>
</author>
<author>
<name sortKey="Kennedy, A C" sort="Kennedy, A C" uniqKey="Kennedy A" first="A C" last="Kennedy">A C Kennedy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15503187</idno>
<idno type="pmid">15503187</idno>
<idno type="doi">10.1007/s00572-004-0327-0</idno>
<idno type="wicri:Area/Main/Corpus">003671</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003671</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root.</title>
<author>
<name sortKey="Mohammad, Munir J" sort="Mohammad, Munir J" uniqKey="Mohammad M" first="Munir J" last="Mohammad">Munir J. Mohammad</name>
<affiliation>
<nlm:affiliation>Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, Jordan. mrusan@just.edu.jo</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, W L" sort="Pan, W L" uniqKey="Pan W" first="W L" last="Pan">W L Pan</name>
</author>
<author>
<name sortKey="Kennedy, A C" sort="Kennedy, A C" uniqKey="Kennedy A" first="A C" last="Kennedy">A C Kennedy</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="ISSN">0940-6360</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anion Exchange Resins (MeSH)</term>
<term>Biological Availability (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Iodine (metabolism)</term>
<term>Iodine (pharmacology)</term>
<term>Metals, Heavy (analysis)</term>
<term>Metals, Heavy (metabolism)</term>
<term>Metals, Heavy (pharmacology)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phosphorus (metabolism)</term>
<term>Phosphorus (pharmacology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (chemistry)</term>
<term>Plant Shoots (growth & development)</term>
<term>Soil (analysis)</term>
<term>Triticum (microbiology)</term>
<term>Triticum (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Metals, Heavy</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iodine</term>
<term>Metals, Heavy</term>
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Iodine</term>
<term>Metals, Heavy</term>
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Anion Exchange Resins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Availability</term>
<term>Ecosystem</term>
<term>Hydrogen-Ion Concentration</term>
<term>Oxidation-Reduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I-P); (3) no inoculation with no P addition (NI-P); (4) AMF inoculation with addition of 50 mg P (kg soil)(-1) (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)(-1) (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)(-1). The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15503187</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>04</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0940-6360</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root.</ArticleTitle>
<Pagination>
<MedlinePgn>259-66</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I-P); (3) no inoculation with no P addition (NI-P); (4) AMF inoculation with addition of 50 mg P (kg soil)(-1) (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)(-1) (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)(-1). The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mohammad</LastName>
<ForeName>Munir J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, Jordan. mrusan@just.edu.jo</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>W L</ForeName>
<Initials>WL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kennedy</LastName>
<ForeName>A C</ForeName>
<Initials>AC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>10</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000837">Anion Exchange Resins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9679TC07X4</RegistryNumber>
<NameOfSubstance UI="D007455">Iodine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000837" MajorTopicYN="N">Anion Exchange Resins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001682" MajorTopicYN="N">Biological Availability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007455" MajorTopicYN="N">Iodine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15503187</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-004-0327-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chemosphere. 2001 Jan;42(2):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1979 Sep;64(3):484-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1981 Sep;68(3):548-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003671 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003671 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15503187
   |texte=   Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:15503187" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020