Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth.

Identifieur interne : 003642 ( Main/Corpus ); précédent : 003641; suivant : 003643

Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth.

Auteurs : S. André ; A. Galiana ; C. Le Roux ; Y. Prin ; M. Neyra ; R. Duponnois

Source :

RBID : pubmed:15616831

English descriptors

Abstract

Two strains of Bradyrhizobium sp., Aust 13C and Aust 11C, were dually or singly inoculated with an ectomycorrhizal fungus, Pisolithus albus to assess the interactions between ectomycorrhizal symbiosis and the nodulation process in glasshouse conditions. Sequencing of strains Aust 13C and Aust 11C confirmed their previous placement in the genus Bradyrhizobium. After 4 months' culture, the ectomycorrhizal symbiosis promoted plant growth and the nodulation process of both Bradyrhizobium strains, singly or dually inoculated. PCR/RFLP analysis of the nodules randomly collected in each treatment with Aust 13C and/or Aust 11C: (1) showed that all the nodules exhibited the same patterns as those of the Bradyrhizobium strains, and (2) did not detect contaminant rhizobia. When both Bradyrhizobium isolates were inoculated together, but without P. albus IR100, Aust 11C was recorded in 13% of the treated nodules compared to 87% for Aust 13C, whereas Aust 11C and Aust 13C were represented in 20 and 80% of the treated nodules, respectively, in the ectomycorrhizal treatment. Therefore Aust 13C had a high competitive ability and a great persistence in soil. The presence of the fungus did not significantly influence the frequencies of each Bradyrhizobium sp. root nodules. Although the mechanisms remain unknown, these results showed that the ectomycorrhizal and biological nitrogen-fixing symbioses were very dependent on each other. From a practical point of view, the role of ectomycorrhizal symbiosis is of great importance to N2 fixation and, consequently, these kinds of symbiosis must be associated in any controlled inoculation.

DOI: 10.1007/s00572-004-0340-3
PubMed: 15616831

Links to Exploration step

pubmed:15616831

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth.</title>
<author>
<name sortKey="Andre, S" sort="Andre, S" uniqKey="Andre S" first="S" last="André">S. André</name>
<affiliation>
<nlm:affiliation>UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes, TA10/J, Campus International de Baillarguet, 34398 Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galiana, A" sort="Galiana, A" uniqKey="Galiana A" first="A" last="Galiana">A. Galiana</name>
</author>
<author>
<name sortKey="Le Roux, C" sort="Le Roux, C" uniqKey="Le Roux C" first="C" last="Le Roux">C. Le Roux</name>
</author>
<author>
<name sortKey="Prin, Y" sort="Prin, Y" uniqKey="Prin Y" first="Y" last="Prin">Y. Prin</name>
</author>
<author>
<name sortKey="Neyra, M" sort="Neyra, M" uniqKey="Neyra M" first="M" last="Neyra">M. Neyra</name>
</author>
<author>
<name sortKey="Duponnois, R" sort="Duponnois, R" uniqKey="Duponnois R" first="R" last="Duponnois">R. Duponnois</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15616831</idno>
<idno type="pmid">15616831</idno>
<idno type="doi">10.1007/s00572-004-0340-3</idno>
<idno type="wicri:Area/Main/Corpus">003642</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003642</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth.</title>
<author>
<name sortKey="Andre, S" sort="Andre, S" uniqKey="Andre S" first="S" last="André">S. André</name>
<affiliation>
<nlm:affiliation>UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes, TA10/J, Campus International de Baillarguet, 34398 Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galiana, A" sort="Galiana, A" uniqKey="Galiana A" first="A" last="Galiana">A. Galiana</name>
</author>
<author>
<name sortKey="Le Roux, C" sort="Le Roux, C" uniqKey="Le Roux C" first="C" last="Le Roux">C. Le Roux</name>
</author>
<author>
<name sortKey="Prin, Y" sort="Prin, Y" uniqKey="Prin Y" first="Y" last="Prin">Y. Prin</name>
</author>
<author>
<name sortKey="Neyra, M" sort="Neyra, M" uniqKey="Neyra M" first="M" last="Neyra">M. Neyra</name>
</author>
<author>
<name sortKey="Duponnois, R" sort="Duponnois, R" uniqKey="Duponnois R" first="R" last="Duponnois">R. Duponnois</name>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="ISSN">0940-6360</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acacia (growth & development)</term>
<term>Acacia (microbiology)</term>
<term>Basidiomycota (growth & development)</term>
<term>Basidiomycota (metabolism)</term>
<term>Bradyrhizobium (classification)</term>
<term>Bradyrhizobium (genetics)</term>
<term>Bradyrhizobium (physiology)</term>
<term>DNA, Bacterial (analysis)</term>
<term>DNA, Ribosomal Spacer (analysis)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Nitrogen Fixation (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>RNA, Ribosomal, 23S (genetics)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>DNA, Bacterial</term>
<term>DNA, Ribosomal Spacer</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bradyrhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bradyrhizobium</term>
<term>RNA, Ribosomal, 16S</term>
<term>RNA, Ribosomal, 23S</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Acacia</term>
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Acacia</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Bradyrhizobium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Molecular Sequence Data</term>
<term>Nitrogen Fixation</term>
<term>Polymerase Chain Reaction</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two strains of Bradyrhizobium sp., Aust 13C and Aust 11C, were dually or singly inoculated with an ectomycorrhizal fungus, Pisolithus albus to assess the interactions between ectomycorrhizal symbiosis and the nodulation process in glasshouse conditions. Sequencing of strains Aust 13C and Aust 11C confirmed their previous placement in the genus Bradyrhizobium. After 4 months' culture, the ectomycorrhizal symbiosis promoted plant growth and the nodulation process of both Bradyrhizobium strains, singly or dually inoculated. PCR/RFLP analysis of the nodules randomly collected in each treatment with Aust 13C and/or Aust 11C: (1) showed that all the nodules exhibited the same patterns as those of the Bradyrhizobium strains, and (2) did not detect contaminant rhizobia. When both Bradyrhizobium isolates were inoculated together, but without P. albus IR100, Aust 11C was recorded in 13% of the treated nodules compared to 87% for Aust 13C, whereas Aust 11C and Aust 13C were represented in 20 and 80% of the treated nodules, respectively, in the ectomycorrhizal treatment. Therefore Aust 13C had a high competitive ability and a great persistence in soil. The presence of the fungus did not significantly influence the frequencies of each Bradyrhizobium sp. root nodules. Although the mechanisms remain unknown, these results showed that the ectomycorrhizal and biological nitrogen-fixing symbioses were very dependent on each other. From a practical point of view, the role of ectomycorrhizal symbiosis is of great importance to N2 fixation and, consequently, these kinds of symbiosis must be associated in any controlled inoculation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15616831</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0940-6360</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth.</ArticleTitle>
<Pagination>
<MedlinePgn>357-64</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Two strains of Bradyrhizobium sp., Aust 13C and Aust 11C, were dually or singly inoculated with an ectomycorrhizal fungus, Pisolithus albus to assess the interactions between ectomycorrhizal symbiosis and the nodulation process in glasshouse conditions. Sequencing of strains Aust 13C and Aust 11C confirmed their previous placement in the genus Bradyrhizobium. After 4 months' culture, the ectomycorrhizal symbiosis promoted plant growth and the nodulation process of both Bradyrhizobium strains, singly or dually inoculated. PCR/RFLP analysis of the nodules randomly collected in each treatment with Aust 13C and/or Aust 11C: (1) showed that all the nodules exhibited the same patterns as those of the Bradyrhizobium strains, and (2) did not detect contaminant rhizobia. When both Bradyrhizobium isolates were inoculated together, but without P. albus IR100, Aust 11C was recorded in 13% of the treated nodules compared to 87% for Aust 13C, whereas Aust 11C and Aust 13C were represented in 20 and 80% of the treated nodules, respectively, in the ectomycorrhizal treatment. Therefore Aust 13C had a high competitive ability and a great persistence in soil. The presence of the fungus did not significantly influence the frequencies of each Bradyrhizobium sp. root nodules. Although the mechanisms remain unknown, these results showed that the ectomycorrhizal and biological nitrogen-fixing symbioses were very dependent on each other. From a practical point of view, the role of ectomycorrhizal symbiosis is of great importance to N2 fixation and, consequently, these kinds of symbiosis must be associated in any controlled inoculation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>André</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes, TA10/J, Campus International de Baillarguet, 34398 Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Galiana</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Le Roux</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prin</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Neyra</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Duponnois</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AY603955</AccessionNumber>
<AccessionNumber>AY603956</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>12</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021903">DNA, Ribosomal Spacer</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012338">RNA, Ribosomal, 23S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000045" MajorTopicYN="N">Acacia</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020369" MajorTopicYN="N">Bradyrhizobium</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021903" MajorTopicYN="N">DNA, Ribosomal Spacer</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="Y">Nitrogen Fixation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012338" MajorTopicYN="N">RNA, Ribosomal, 23S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15616831</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-004-0340-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mycorrhiza. 2003 Apr;13(2):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 13;94(10):5467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Nov;60(11):3974-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):320-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2001 Mar;51(Pt 2):623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11321108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1994;161(4):300-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7911654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 May;63(5):1852-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1969 Apr;59(4):411-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5811914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2003 Jun;26(2):203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12866847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2001 Dec;11(6):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Jul 1;41(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1996 Jan;46(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8573482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Nov;57(11):3278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1781685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11491327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2003 Feb;45(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12545310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003642 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003642 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15616831
   |texte=   Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:15616831" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020