Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

[Effects of AM fungi on drought tolerance of citrus grafting seedling trifoliate orange/cara cara].

Identifieur interne : 003480 ( Main/Corpus ); précédent : 003479; suivant : 003481

[Effects of AM fungi on drought tolerance of citrus grafting seedling trifoliate orange/cara cara].

Auteurs : Qiangsheng Wu ; Renxue Xia

Source :

RBID : pubmed:16110660

English descriptors

Abstract

With pot experiment in a greenhouse, this paper studied the effects of arbuscular mycorrhizal (AM) fungi Glomus mosseae on the drought tolerance of citrus grafting seedling trifoliate orange/cara cara under natural water stress and rewatering. The results showed that inoculation with AM fungi significantly increased the plant height, stem diameter, leaf area, and shoot length of test seedling. At the 4th day of rewatering, mycorrhizal plant had significantly higher root soluble protein content and superoxide dismutase (SOD) and catalase (CAT) activities than non-mycorrhizal plant. An interaction between water and AM fungi could significantly promote leaf SOD activity. During natural water stress and rewatering, AM fungi inoculation could decrease the leaf content of malondialdehyde (MDA), increase those of soluble sugar and soluble protein, and enhance the activities of SOD, peroxidase (POD) and CAT. As a result, the capability of osmotic adjustment and protective recovery, and thus, the drought tolerance of mycorrhizal citrus grafting seedling were improved. The mechanism that AM fungi could enhance the drought tolerance of host plant might be related to the protective system of host plant.

PubMed: 16110660

Links to Exploration step

pubmed:16110660

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">[Effects of AM fungi on drought tolerance of citrus grafting seedling trifoliate orange/cara cara].</title>
<author>
<name sortKey="Wu, Qiangsheng" sort="Wu, Qiangsheng" uniqKey="Wu Q" first="Qiangsheng" last="Wu">Qiangsheng Wu</name>
<affiliation>
<nlm:affiliation>College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China. wuqsh@webmail.hzau.edu.cn</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xia, Renxue" sort="Xia, Renxue" uniqKey="Xia R" first="Renxue" last="Xia">Renxue Xia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16110660</idno>
<idno type="pmid">16110660</idno>
<idno type="wicri:Area/Main/Corpus">003480</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003480</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">[Effects of AM fungi on drought tolerance of citrus grafting seedling trifoliate orange/cara cara].</title>
<author>
<name sortKey="Wu, Qiangsheng" sort="Wu, Qiangsheng" uniqKey="Wu Q" first="Qiangsheng" last="Wu">Qiangsheng Wu</name>
<affiliation>
<nlm:affiliation>College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China. wuqsh@webmail.hzau.edu.cn</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xia, Renxue" sort="Xia, Renxue" uniqKey="Xia R" first="Renxue" last="Xia">Renxue Xia</name>
</author>
</analytic>
<series>
<title level="j">Ying yong sheng tai xue bao = The journal of applied ecology</title>
<idno type="ISSN">1001-9332</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Citrus (growth & development)</term>
<term>Citrus sinensis (growth & development)</term>
<term>Climate (MeSH)</term>
<term>Disasters (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Seedlings (growth & development)</term>
<term>Soil (analysis)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Citrus</term>
<term>Citrus sinensis</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate</term>
<term>Disasters</term>
<term>Ecosystem</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With pot experiment in a greenhouse, this paper studied the effects of arbuscular mycorrhizal (AM) fungi Glomus mosseae on the drought tolerance of citrus grafting seedling trifoliate orange/cara cara under natural water stress and rewatering. The results showed that inoculation with AM fungi significantly increased the plant height, stem diameter, leaf area, and shoot length of test seedling. At the 4th day of rewatering, mycorrhizal plant had significantly higher root soluble protein content and superoxide dismutase (SOD) and catalase (CAT) activities than non-mycorrhizal plant. An interaction between water and AM fungi could significantly promote leaf SOD activity. During natural water stress and rewatering, AM fungi inoculation could decrease the leaf content of malondialdehyde (MDA), increase those of soluble sugar and soluble protein, and enhance the activities of SOD, peroxidase (POD) and CAT. As a result, the capability of osmotic adjustment and protective recovery, and thus, the drought tolerance of mycorrhizal citrus grafting seedling were improved. The mechanism that AM fungi could enhance the drought tolerance of host plant might be related to the protective system of host plant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16110660</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1001-9332</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>16</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2005</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Ying yong sheng tai xue bao = The journal of applied ecology</Title>
<ISOAbbreviation>Ying Yong Sheng Tai Xue Bao</ISOAbbreviation>
</Journal>
<ArticleTitle>[Effects of AM fungi on drought tolerance of citrus grafting seedling trifoliate orange/cara cara].</ArticleTitle>
<Pagination>
<MedlinePgn>865-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>With pot experiment in a greenhouse, this paper studied the effects of arbuscular mycorrhizal (AM) fungi Glomus mosseae on the drought tolerance of citrus grafting seedling trifoliate orange/cara cara under natural water stress and rewatering. The results showed that inoculation with AM fungi significantly increased the plant height, stem diameter, leaf area, and shoot length of test seedling. At the 4th day of rewatering, mycorrhizal plant had significantly higher root soluble protein content and superoxide dismutase (SOD) and catalase (CAT) activities than non-mycorrhizal plant. An interaction between water and AM fungi could significantly promote leaf SOD activity. During natural water stress and rewatering, AM fungi inoculation could decrease the leaf content of malondialdehyde (MDA), increase those of soluble sugar and soluble protein, and enhance the activities of SOD, peroxidase (POD) and CAT. As a result, the capability of osmotic adjustment and protective recovery, and thus, the drought tolerance of mycorrhizal citrus grafting seedling were improved. The mechanism that AM fungi could enhance the drought tolerance of host plant might be related to the protective system of host plant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Qiangsheng</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China. wuqsh@webmail.hzau.edu.cn</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Renxue</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>chi</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>China</Country>
<MedlineTA>Ying Yong Sheng Tai Xue Bao</MedlineTA>
<NlmUniqueID>9425159</NlmUniqueID>
<ISSNLinking>1001-9332</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002957" MajorTopicYN="N">Citrus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002980" MajorTopicYN="N">Climate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004190" MajorTopicYN="N">Disasters</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16110660</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003480 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003480 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16110660
   |texte=   [Effects of AM fungi on drought tolerance of citrus grafting seedling trifoliate orange/cara cara].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16110660" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020