Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula.

Identifieur interne : 003432 ( Main/Corpus ); précédent : 003431; suivant : 003433

Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula.

Auteurs : Frank Colditz ; Hans-Peter Braun ; Christophe Jacquet ; Karsten Niehaus ; Franziska Krajinski

Source :

RBID : pubmed:16235107

English descriptors

Abstract

To investigate the molecular mechanisms underlying susceptibility of legumes to the root pathogen Aphanomyces euteiches (oomycota), comparative proteomic studies have been carried out. In a first approach, we have analysed two Medicago truncatula lines of the French CORE collection (F83.005-5 (R2002) and F83.005-9 (R2002)), which showed either increased or decreased susceptibility to A. euteiches as compared to the widely adopted line A17. Several proteins were identified to be differentially induced after pathogen challenge in the two M. truncatula accessions with altered disease susceptibility, whereof proteins with increased abundances in the more resistant line F83.005-9 could be involved in mechanisms that lead to an improved disease resistance. Among these proteins, we identified two proteasome alpha subunits, which might be involved in defense response. To broaden our studies on A. euteiches-tolerance of M. truncatula, we investigated two other phenomena that lead to an either increased A. euteiches-resistance or to an enhanced susceptibility. The topic of an enhanced plant resistance to A. euteiches was studied in plants showing a bioprotective effect of a pre-established arbuscular mycorrhiza (AM) symbiosis. Evaluation of root fresh weights and pathogen spreading in the root system clearly indicate that mycorrhizal plants show increased A. euteiches-resistance as compared to non-mycorrhizal plants. Proteome analyses revealed the induction of similar protein patterns as in the M. truncatula accessions with comparatively high resistance level to A. euteiches. In a third approach, increased A. euteiches susceptibility was effected by exogenous abscisic acid (ABA) application prior to root infection. Evaluation of the abundance levels of a group of pathogenesis related class 10 (PR10)-like proteins, which were previously identified to be regulated after A. euteiches infection, revealed a correlation between the abundance levels of these proteins and the A. euteiches infection level or severity.

DOI: 10.1007/s11103-005-0184-z
PubMed: 16235107

Links to Exploration step

pubmed:16235107

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula.</title>
<author>
<name sortKey="Colditz, Frank" sort="Colditz, Frank" uniqKey="Colditz F" first="Frank" last="Colditz">Frank Colditz</name>
<affiliation>
<nlm:affiliation>Lehrgebiet Molekulargenetik, Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Braun, Hans Peter" sort="Braun, Hans Peter" uniqKey="Braun H" first="Hans-Peter" last="Braun">Hans-Peter Braun</name>
</author>
<author>
<name sortKey="Jacquet, Christophe" sort="Jacquet, Christophe" uniqKey="Jacquet C" first="Christophe" last="Jacquet">Christophe Jacquet</name>
</author>
<author>
<name sortKey="Niehaus, Karsten" sort="Niehaus, Karsten" uniqKey="Niehaus K" first="Karsten" last="Niehaus">Karsten Niehaus</name>
</author>
<author>
<name sortKey="Krajinski, Franziska" sort="Krajinski, Franziska" uniqKey="Krajinski F" first="Franziska" last="Krajinski">Franziska Krajinski</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16235107</idno>
<idno type="pmid">16235107</idno>
<idno type="doi">10.1007/s11103-005-0184-z</idno>
<idno type="wicri:Area/Main/Corpus">003432</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003432</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula.</title>
<author>
<name sortKey="Colditz, Frank" sort="Colditz, Frank" uniqKey="Colditz F" first="Frank" last="Colditz">Frank Colditz</name>
<affiliation>
<nlm:affiliation>Lehrgebiet Molekulargenetik, Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Braun, Hans Peter" sort="Braun, Hans Peter" uniqKey="Braun H" first="Hans-Peter" last="Braun">Hans-Peter Braun</name>
</author>
<author>
<name sortKey="Jacquet, Christophe" sort="Jacquet, Christophe" uniqKey="Jacquet C" first="Christophe" last="Jacquet">Christophe Jacquet</name>
</author>
<author>
<name sortKey="Niehaus, Karsten" sort="Niehaus, Karsten" uniqKey="Niehaus K" first="Karsten" last="Niehaus">Karsten Niehaus</name>
</author>
<author>
<name sortKey="Krajinski, Franziska" sort="Krajinski, Franziska" uniqKey="Krajinski F" first="Franziska" last="Krajinski">Franziska Krajinski</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (pharmacology)</term>
<term>Aphanomyces (growth & development)</term>
<term>Electrophoresis, Gel, Two-Dimensional (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>Mass Spectrometry (methods)</term>
<term>Medicago truncatula (drug effects)</term>
<term>Medicago truncatula (metabolism)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Growth Regulators (pharmacology)</term>
<term>Plant Proteins (analysis)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Proteome (analysis)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Plant Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Aphanomyces</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Diseases</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrophoresis, Gel, Two-Dimensional</term>
<term>Immunity, Innate</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To investigate the molecular mechanisms underlying susceptibility of legumes to the root pathogen Aphanomyces euteiches (oomycota), comparative proteomic studies have been carried out. In a first approach, we have analysed two Medicago truncatula lines of the French CORE collection (F83.005-5 (R2002) and F83.005-9 (R2002)), which showed either increased or decreased susceptibility to A. euteiches as compared to the widely adopted line A17. Several proteins were identified to be differentially induced after pathogen challenge in the two M. truncatula accessions with altered disease susceptibility, whereof proteins with increased abundances in the more resistant line F83.005-9 could be involved in mechanisms that lead to an improved disease resistance. Among these proteins, we identified two proteasome alpha subunits, which might be involved in defense response. To broaden our studies on A. euteiches-tolerance of M. truncatula, we investigated two other phenomena that lead to an either increased A. euteiches-resistance or to an enhanced susceptibility. The topic of an enhanced plant resistance to A. euteiches was studied in plants showing a bioprotective effect of a pre-established arbuscular mycorrhiza (AM) symbiosis. Evaluation of root fresh weights and pathogen spreading in the root system clearly indicate that mycorrhizal plants show increased A. euteiches-resistance as compared to non-mycorrhizal plants. Proteome analyses revealed the induction of similar protein patterns as in the M. truncatula accessions with comparatively high resistance level to A. euteiches. In a third approach, increased A. euteiches susceptibility was effected by exogenous abscisic acid (ABA) application prior to root infection. Evaluation of the abundance levels of a group of pathogenesis related class 10 (PR10)-like proteins, which were previously identified to be regulated after A. euteiches infection, revealed a correlation between the abundance levels of these proteins and the A. euteiches infection level or severity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16235107</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>59</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2005</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula.</ArticleTitle>
<Pagination>
<MedlinePgn>387-406</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>To investigate the molecular mechanisms underlying susceptibility of legumes to the root pathogen Aphanomyces euteiches (oomycota), comparative proteomic studies have been carried out. In a first approach, we have analysed two Medicago truncatula lines of the French CORE collection (F83.005-5 (R2002) and F83.005-9 (R2002)), which showed either increased or decreased susceptibility to A. euteiches as compared to the widely adopted line A17. Several proteins were identified to be differentially induced after pathogen challenge in the two M. truncatula accessions with altered disease susceptibility, whereof proteins with increased abundances in the more resistant line F83.005-9 could be involved in mechanisms that lead to an improved disease resistance. Among these proteins, we identified two proteasome alpha subunits, which might be involved in defense response. To broaden our studies on A. euteiches-tolerance of M. truncatula, we investigated two other phenomena that lead to an either increased A. euteiches-resistance or to an enhanced susceptibility. The topic of an enhanced plant resistance to A. euteiches was studied in plants showing a bioprotective effect of a pre-established arbuscular mycorrhiza (AM) symbiosis. Evaluation of root fresh weights and pathogen spreading in the root system clearly indicate that mycorrhizal plants show increased A. euteiches-resistance as compared to non-mycorrhizal plants. Proteome analyses revealed the induction of similar protein patterns as in the M. truncatula accessions with comparatively high resistance level to A. euteiches. In a third approach, increased A. euteiches susceptibility was effected by exogenous abscisic acid (ABA) application prior to root infection. Evaluation of the abundance levels of a group of pathogenesis related class 10 (PR10)-like proteins, which were previously identified to be regulated after A. euteiches infection, revealed a correlation between the abundance levels of these proteins and the A. euteiches infection level or severity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Colditz</LastName>
<ForeName>Frank</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Lehrgebiet Molekulargenetik, Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Braun</LastName>
<ForeName>Hans-Peter</ForeName>
<Initials>HP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquet</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niehaus</LastName>
<ForeName>Karsten</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krajinski</LastName>
<ForeName>Franziska</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044744" MajorTopicYN="N">Aphanomyces</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015180" MajorTopicYN="N">Electrophoresis, Gel, Two-Dimensional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16235107</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-005-0184-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(1):109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Aug 5;267(22):15367-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1379227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Sep;52(362):1947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11520884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2001 Sep 7;286(5):973-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11527396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10865-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Nov 18;397(2-3):239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8955355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Feb;4(2):285-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14760698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Jul;14(7):877-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11437261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1104-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(2):186-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jun;16(6):508-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1994;193(3):470-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2001 Feb;22(3):586-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11258772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1999 Aug;2(4):301-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10459004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2002 Jan;23(1):122-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11824612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Jul;81(3):802-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Sep;91(1):23-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2001 Nov;1(11):1424-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11922602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Aug 15;418(6899):793-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12181571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1607-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Jun;12(6):479-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10356799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2003 May;35(5):637-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Aug;17(8):909-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15305612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 23;278(21):19406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Jul;4(7):1883-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Mar;19(3):1720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10022859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):840-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644637</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003432 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003432 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16235107
   |texte=   Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches-tolerance of Medicago truncatula.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16235107" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020