Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.

Identifieur interne : 003406 ( Main/Corpus ); précédent : 003405; suivant : 003407

The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.

Auteurs : Baodong Chen ; Yong-Guan Zhu ; Xuhong Zhang ; Iver Jakobsen

Source :

RBID : pubmed:16305138

English descriptors

Abstract

BACKGROUND

Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered.

MATERIALS AND METHODS

In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg(-1) soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U.

RESULTS

Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg(-1). At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg(-1) stimulated, but 60 mg P kg(-1) marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls.

CONCLUSION

Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments.

PERSPECTIVES

The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.


DOI: 10.1065/espr2005.06.267
PubMed: 16305138

Links to Exploration step

pubmed:16305138

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.</title>
<author>
<name sortKey="Chen, Baodong" sort="Chen, Baodong" uniqKey="Chen B" first="Baodong" last="Chen">Baodong Chen</name>
<affiliation>
<nlm:affiliation>Department of Soil Environmental Science/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yong Guan" sort="Zhu, Yong Guan" uniqKey="Zhu Y" first="Yong-Guan" last="Zhu">Yong-Guan Zhu</name>
</author>
<author>
<name sortKey="Zhang, Xuhong" sort="Zhang, Xuhong" uniqKey="Zhang X" first="Xuhong" last="Zhang">Xuhong Zhang</name>
</author>
<author>
<name sortKey="Jakobsen, Iver" sort="Jakobsen, Iver" uniqKey="Jakobsen I" first="Iver" last="Jakobsen">Iver Jakobsen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16305138</idno>
<idno type="pmid">16305138</idno>
<idno type="doi">10.1065/espr2005.06.267</idno>
<idno type="wicri:Area/Main/Corpus">003406</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003406</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.</title>
<author>
<name sortKey="Chen, Baodong" sort="Chen, Baodong" uniqKey="Chen B" first="Baodong" last="Chen">Baodong Chen</name>
<affiliation>
<nlm:affiliation>Department of Soil Environmental Science/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yong Guan" sort="Zhu, Yong Guan" uniqKey="Zhu Y" first="Yong-Guan" last="Zhu">Yong-Guan Zhu</name>
</author>
<author>
<name sortKey="Zhang, Xuhong" sort="Zhang, Xuhong" uniqKey="Zhang X" first="Xuhong" last="Zhang">Xuhong Zhang</name>
</author>
<author>
<name sortKey="Jakobsen, Iver" sort="Jakobsen, Iver" uniqKey="Jakobsen I" first="Iver" last="Jakobsen">Iver Jakobsen</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="ISSN">0944-1344</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Fungi (physiology)</term>
<term>Genotype (MeSH)</term>
<term>Hordeum (genetics)</term>
<term>Hordeum (metabolism)</term>
<term>Hordeum (microbiology)</term>
<term>Mutation (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphorus (pharmacology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (metabolism)</term>
<term>Soil Pollutants, Radioactive (analysis)</term>
<term>Soil Pollutants, Radioactive (metabolism)</term>
<term>Uranium (analysis)</term>
<term>Uranium (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil Pollutants, Radioactive</term>
<term>Uranium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Soil Pollutants, Radioactive</term>
<term>Uranium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hordeum</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hordeum</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hordeum</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Genotype</term>
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>MATERIALS AND METHODS</b>
</p>
<p>In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg(-1) soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg(-1). At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg(-1) stimulated, but 60 mg P kg(-1) marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>PERSPECTIVES</b>
</p>
<p>The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16305138</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>12</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0944-1344</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2005</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.</ArticleTitle>
<Pagination>
<MedlinePgn>325-31</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered.</AbstractText>
<AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg(-1) soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg(-1). At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg(-1) stimulated, but 60 mg P kg(-1) marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments.</AbstractText>
<AbstractText Label="PERSPECTIVES" NlmCategory="CONCLUSIONS">The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Baodong</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Soil Environmental Science/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Yong-Guan</ForeName>
<Initials>YG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xuhong</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jakobsen</LastName>
<ForeName>Iver</ForeName>
<Initials>I</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012990">Soil Pollutants, Radioactive</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4OC371KSTK</RegistryNumber>
<NameOfSubstance UI="D014501">Uranium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012990" MajorTopicYN="N">Soil Pollutants, Radioactive</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014501" MajorTopicYN="N">Uranium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16305138</ArticleId>
<ArticleId IdType="doi">10.1065/espr2005.06.267</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003406 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003406 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16305138
   |texte=   The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16305138" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020