Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.).

Identifieur interne : 003315 ( Main/Corpus ); précédent : 003314; suivant : 003316

Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.).

Auteurs : R. Nagy ; M J V. Vasconcelos ; S. Zhao ; J. Mcelver ; W. Bruce ; N. Amrhein ; K G Raghothama ; M. Bucher

Source :

RBID : pubmed:16547863

English descriptors

Abstract

Maize is one of the most important crops in the developing world, where adverse soil conditions and low fertilizer input are the two main constraints for stable food supply. Understanding the molecular and biochemical mechanisms involved in nutrient uptake is expected to support the development of future breeding strategies aimed at improving maize productivity on infertile soils. Phosphorus is the least mobile macronutrient in the soils and it is often limiting plant growth. In this work, five genes encoding Pht1 phosphate transporters which contribute to phosphate uptake and allocation in maize were identified. In phosphate-starved plants, transcripts of most of the five transporters were present in roots and leaves. Independent of the phosphate supply, expression of two genes was predominant in pollen or in roots colonized by symbiotic mycorrhizal fungi, respectively. Interestingly, high transcript levels of the mycorrhiza-inducible gene were also detectable in leaves of phosphate-starved plants. Thus, differential expression of Pht1 phosphate transporters in maize suggests involvement of the encoded proteins in diverse processes, including phosphate uptake from soil and transport at the symbiotic interface in mycorrhizas, phosphate (re)translocation in the shoot, and phosphate uptake during pollen tube growth.

DOI: 10.1055/s-2005-873052
PubMed: 16547863

Links to Exploration step

pubmed:16547863

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.).</title>
<author>
<name sortKey="Nagy, R" sort="Nagy, R" uniqKey="Nagy R" first="R" last="Nagy">R. Nagy</name>
<affiliation>
<nlm:affiliation>Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, 8315 Lindau, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vasconcelos, M J V" sort="Vasconcelos, M J V" uniqKey="Vasconcelos M" first="M J V" last="Vasconcelos">M J V. Vasconcelos</name>
</author>
<author>
<name sortKey="Zhao, S" sort="Zhao, S" uniqKey="Zhao S" first="S" last="Zhao">S. Zhao</name>
</author>
<author>
<name sortKey="Mcelver, J" sort="Mcelver, J" uniqKey="Mcelver J" first="J" last="Mcelver">J. Mcelver</name>
</author>
<author>
<name sortKey="Bruce, W" sort="Bruce, W" uniqKey="Bruce W" first="W" last="Bruce">W. Bruce</name>
</author>
<author>
<name sortKey="Amrhein, N" sort="Amrhein, N" uniqKey="Amrhein N" first="N" last="Amrhein">N. Amrhein</name>
</author>
<author>
<name sortKey="Raghothama, K G" sort="Raghothama, K G" uniqKey="Raghothama K" first="K G" last="Raghothama">K G Raghothama</name>
</author>
<author>
<name sortKey="Bucher, M" sort="Bucher, M" uniqKey="Bucher M" first="M" last="Bucher">M. Bucher</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16547863</idno>
<idno type="pmid">16547863</idno>
<idno type="doi">10.1055/s-2005-873052</idno>
<idno type="wicri:Area/Main/Corpus">003315</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003315</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.).</title>
<author>
<name sortKey="Nagy, R" sort="Nagy, R" uniqKey="Nagy R" first="R" last="Nagy">R. Nagy</name>
<affiliation>
<nlm:affiliation>Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, 8315 Lindau, Switzerland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vasconcelos, M J V" sort="Vasconcelos, M J V" uniqKey="Vasconcelos M" first="M J V" last="Vasconcelos">M J V. Vasconcelos</name>
</author>
<author>
<name sortKey="Zhao, S" sort="Zhao, S" uniqKey="Zhao S" first="S" last="Zhao">S. Zhao</name>
</author>
<author>
<name sortKey="Mcelver, J" sort="Mcelver, J" uniqKey="Mcelver J" first="J" last="Mcelver">J. Mcelver</name>
</author>
<author>
<name sortKey="Bruce, W" sort="Bruce, W" uniqKey="Bruce W" first="W" last="Bruce">W. Bruce</name>
</author>
<author>
<name sortKey="Amrhein, N" sort="Amrhein, N" uniqKey="Amrhein N" first="N" last="Amrhein">N. Amrhein</name>
</author>
<author>
<name sortKey="Raghothama, K G" sort="Raghothama, K G" uniqKey="Raghothama K" first="K G" last="Raghothama">K G Raghothama</name>
</author>
<author>
<name sortKey="Bucher, M" sort="Bucher, M" uniqKey="Bucher M" first="M" last="Bucher">M. Bucher</name>
</author>
</analytic>
<series>
<title level="j">Plant biology (Stuttgart, Germany)</title>
<idno type="ISSN">1435-8603</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>DNA, Complementary (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phosphate Transport Proteins (genetics)</term>
<term>Phosphate Transport Proteins (metabolism)</term>
<term>Phosphorus (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Stems (metabolism)</term>
<term>Pollen (metabolism)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphate Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphate Transport Proteins</term>
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
<term>Pollen</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Phylogeny</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Maize is one of the most important crops in the developing world, where adverse soil conditions and low fertilizer input are the two main constraints for stable food supply. Understanding the molecular and biochemical mechanisms involved in nutrient uptake is expected to support the development of future breeding strategies aimed at improving maize productivity on infertile soils. Phosphorus is the least mobile macronutrient in the soils and it is often limiting plant growth. In this work, five genes encoding Pht1 phosphate transporters which contribute to phosphate uptake and allocation in maize were identified. In phosphate-starved plants, transcripts of most of the five transporters were present in roots and leaves. Independent of the phosphate supply, expression of two genes was predominant in pollen or in roots colonized by symbiotic mycorrhizal fungi, respectively. Interestingly, high transcript levels of the mycorrhiza-inducible gene were also detectable in leaves of phosphate-starved plants. Thus, differential expression of Pht1 phosphate transporters in maize suggests involvement of the encoded proteins in diverse processes, including phosphate uptake from soil and transport at the symbiotic interface in mycorrhizas, phosphate (re)translocation in the shoot, and phosphate uptake during pollen tube growth.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16547863</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1435-8603</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2006</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant biology (Stuttgart, Germany)</Title>
<ISOAbbreviation>Plant Biol (Stuttg)</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.).</ArticleTitle>
<Pagination>
<MedlinePgn>186-97</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Maize is one of the most important crops in the developing world, where adverse soil conditions and low fertilizer input are the two main constraints for stable food supply. Understanding the molecular and biochemical mechanisms involved in nutrient uptake is expected to support the development of future breeding strategies aimed at improving maize productivity on infertile soils. Phosphorus is the least mobile macronutrient in the soils and it is often limiting plant growth. In this work, five genes encoding Pht1 phosphate transporters which contribute to phosphate uptake and allocation in maize were identified. In phosphate-starved plants, transcripts of most of the five transporters were present in roots and leaves. Independent of the phosphate supply, expression of two genes was predominant in pollen or in roots colonized by symbiotic mycorrhizal fungi, respectively. Interestingly, high transcript levels of the mycorrhiza-inducible gene were also detectable in leaves of phosphate-starved plants. Thus, differential expression of Pht1 phosphate transporters in maize suggests involvement of the encoded proteins in diverse processes, including phosphate uptake from soil and transport at the symbiotic interface in mycorrhizas, phosphate (re)translocation in the shoot, and phosphate uptake during pollen tube growth.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nagy</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, 8315 Lindau, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vasconcelos</LastName>
<ForeName>M J V</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McElver</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bruce</LastName>
<ForeName>W</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Amrhein</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raghothama</LastName>
<ForeName>K G</ForeName>
<Initials>KG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bucher</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Biol (Stuttg)</MedlineTA>
<NlmUniqueID>101148926</NlmUniqueID>
<ISSNLinking>1435-8603</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028061">Phosphate Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028061" MajorTopicYN="N">Phosphate Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011058" MajorTopicYN="N">Pollen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16547863</ArticleId>
<ArticleId IdType="doi">10.1055/s-2005-873052</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003315 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003315 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16547863
   |texte=   Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16547863" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020