Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.

Identifieur interne : 003165 ( Main/Corpus ); précédent : 003164; suivant : 003166

Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.

Auteurs : R. Duponnois ; M. Kisa ; K. Assigbetse ; Y. Prin ; J. Thioulouse ; M. Issartel ; P. Moulin ; M. Lepage

Source :

RBID : pubmed:16989893

English descriptors

Abstract

Cd-tolerant bacterial strains of fluorescent pseudomonads, mostly belonging to Pseudomonas monteillii, were isolated from termite mound soil (Macrotermes subhyalinus, a litter-forager and fungus-growing termite), in a Sudanese shrubby savanna, Burkina Faso. Such large mounds appeared as sites of great bacterial diversity and could be considered as hot spots of metal-tolerant fluorescent pseudomonads. Microbial isolates were inoculated to Sorghum plants (S. bicolor) in glasshouse experiments with soil amended with CdCl(2) (560 mg Cd kg(-1) soil). Microbial functional diversity was assessed at the end of the experiment by measurement of in situ patterns of catabolic potentials. All the bacteria isolates significantly improved the shoot and total biomass of sorghum plants compared to the control. Results concerning root biomass were not significant with some strains. Arbuscular mycorrhiza (AM) was greatly reduced by CdCl(2) amendment, and fluorescent pseudomonad inoculation significantly increased AM colonisation in the contaminated soil. The bacterial inoculation significantly improved Cd uptake by sorghum plants. Measurement of catabolic potentials on 16 substrates showed that the microbial communities were different according to the soil amendment. Soils samples inoculated with pseudomonad strains presented a higher use of ketoglutaric and hydroxybutiric acids, as opposed to fumaric acid in soil samples not inoculated. It is suggested that fluorescent pseudomonads could act indirectly in such metabolic processes by involving a lower rate of degradation of citric acid, in line with the effect of small organic acid on phytoextraction of heavy metals from soil. This is a first contribution to bioremediation of metal-contaminated sites with soil-to-plant transfer, using termite built structures. Further data are required on the efficiency of the bacterial strains isolated and on the processes involved.

DOI: 10.1016/j.scitotenv.2006.07.008
PubMed: 16989893

Links to Exploration step

pubmed:16989893

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.</title>
<author>
<name sortKey="Duponnois, R" sort="Duponnois, R" uniqKey="Duponnois R" first="R" last="Duponnois">R. Duponnois</name>
<affiliation>
<nlm:affiliation>IRD, UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes, LSTM, 34398 Montpellier, Cedex 05, France. robin.duponnois@ird.sn</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kisa, M" sort="Kisa, M" uniqKey="Kisa M" first="M" last="Kisa">M. Kisa</name>
</author>
<author>
<name sortKey="Assigbetse, K" sort="Assigbetse, K" uniqKey="Assigbetse K" first="K" last="Assigbetse">K. Assigbetse</name>
</author>
<author>
<name sortKey="Prin, Y" sort="Prin, Y" uniqKey="Prin Y" first="Y" last="Prin">Y. Prin</name>
</author>
<author>
<name sortKey="Thioulouse, J" sort="Thioulouse, J" uniqKey="Thioulouse J" first="J" last="Thioulouse">J. Thioulouse</name>
</author>
<author>
<name sortKey="Issartel, M" sort="Issartel, M" uniqKey="Issartel M" first="M" last="Issartel">M. Issartel</name>
</author>
<author>
<name sortKey="Moulin, P" sort="Moulin, P" uniqKey="Moulin P" first="P" last="Moulin">P. Moulin</name>
</author>
<author>
<name sortKey="Lepage, M" sort="Lepage, M" uniqKey="Lepage M" first="M" last="Lepage">M. Lepage</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16989893</idno>
<idno type="pmid">16989893</idno>
<idno type="doi">10.1016/j.scitotenv.2006.07.008</idno>
<idno type="wicri:Area/Main/Corpus">003165</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.</title>
<author>
<name sortKey="Duponnois, R" sort="Duponnois, R" uniqKey="Duponnois R" first="R" last="Duponnois">R. Duponnois</name>
<affiliation>
<nlm:affiliation>IRD, UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes, LSTM, 34398 Montpellier, Cedex 05, France. robin.duponnois@ird.sn</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kisa, M" sort="Kisa, M" uniqKey="Kisa M" first="M" last="Kisa">M. Kisa</name>
</author>
<author>
<name sortKey="Assigbetse, K" sort="Assigbetse, K" uniqKey="Assigbetse K" first="K" last="Assigbetse">K. Assigbetse</name>
</author>
<author>
<name sortKey="Prin, Y" sort="Prin, Y" uniqKey="Prin Y" first="Y" last="Prin">Y. Prin</name>
</author>
<author>
<name sortKey="Thioulouse, J" sort="Thioulouse, J" uniqKey="Thioulouse J" first="J" last="Thioulouse">J. Thioulouse</name>
</author>
<author>
<name sortKey="Issartel, M" sort="Issartel, M" uniqKey="Issartel M" first="M" last="Issartel">M. Issartel</name>
</author>
<author>
<name sortKey="Moulin, P" sort="Moulin, P" uniqKey="Moulin P" first="P" last="Moulin">P. Moulin</name>
</author>
<author>
<name sortKey="Lepage, M" sort="Lepage, M" uniqKey="Lepage M" first="M" last="Lepage">M. Lepage</name>
</author>
</analytic>
<series>
<title level="j">The Science of the total environment</title>
<idno type="ISSN">0048-9697</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Cadmium (analysis)</term>
<term>Cadmium (metabolism)</term>
<term>Cadmium (toxicity)</term>
<term>Fluorescence (MeSH)</term>
<term>Isoptera (MeSH)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Shoots (chemistry)</term>
<term>Plant Shoots (growth & development)</term>
<term>Pseudomonas (isolation & purification)</term>
<term>Pseudomonas (physiology)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Sorghum (growth & development)</term>
<term>Sorghum (metabolism)</term>
<term>Sorghum (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biodegradation, Environmental</term>
<term>Fluorescence</term>
<term>Isoptera</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cd-tolerant bacterial strains of fluorescent pseudomonads, mostly belonging to Pseudomonas monteillii, were isolated from termite mound soil (Macrotermes subhyalinus, a litter-forager and fungus-growing termite), in a Sudanese shrubby savanna, Burkina Faso. Such large mounds appeared as sites of great bacterial diversity and could be considered as hot spots of metal-tolerant fluorescent pseudomonads. Microbial isolates were inoculated to Sorghum plants (S. bicolor) in glasshouse experiments with soil amended with CdCl(2) (560 mg Cd kg(-1) soil). Microbial functional diversity was assessed at the end of the experiment by measurement of in situ patterns of catabolic potentials. All the bacteria isolates significantly improved the shoot and total biomass of sorghum plants compared to the control. Results concerning root biomass were not significant with some strains. Arbuscular mycorrhiza (AM) was greatly reduced by CdCl(2) amendment, and fluorescent pseudomonad inoculation significantly increased AM colonisation in the contaminated soil. The bacterial inoculation significantly improved Cd uptake by sorghum plants. Measurement of catabolic potentials on 16 substrates showed that the microbial communities were different according to the soil amendment. Soils samples inoculated with pseudomonad strains presented a higher use of ketoglutaric and hydroxybutiric acids, as opposed to fumaric acid in soil samples not inoculated. It is suggested that fluorescent pseudomonads could act indirectly in such metabolic processes by involving a lower rate of degradation of citric acid, in line with the effect of small organic acid on phytoextraction of heavy metals from soil. This is a first contribution to bioremediation of metal-contaminated sites with soil-to-plant transfer, using termite built structures. Further data are required on the efficiency of the bacterial strains isolated and on the processes involved.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16989893</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>01</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0048-9697</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>370</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Nov</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Science of the total environment</Title>
<ISOAbbreviation>Sci Total Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.</ArticleTitle>
<Pagination>
<MedlinePgn>391-400</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Cd-tolerant bacterial strains of fluorescent pseudomonads, mostly belonging to Pseudomonas monteillii, were isolated from termite mound soil (Macrotermes subhyalinus, a litter-forager and fungus-growing termite), in a Sudanese shrubby savanna, Burkina Faso. Such large mounds appeared as sites of great bacterial diversity and could be considered as hot spots of metal-tolerant fluorescent pseudomonads. Microbial isolates were inoculated to Sorghum plants (S. bicolor) in glasshouse experiments with soil amended with CdCl(2) (560 mg Cd kg(-1) soil). Microbial functional diversity was assessed at the end of the experiment by measurement of in situ patterns of catabolic potentials. All the bacteria isolates significantly improved the shoot and total biomass of sorghum plants compared to the control. Results concerning root biomass were not significant with some strains. Arbuscular mycorrhiza (AM) was greatly reduced by CdCl(2) amendment, and fluorescent pseudomonad inoculation significantly increased AM colonisation in the contaminated soil. The bacterial inoculation significantly improved Cd uptake by sorghum plants. Measurement of catabolic potentials on 16 substrates showed that the microbial communities were different according to the soil amendment. Soils samples inoculated with pseudomonad strains presented a higher use of ketoglutaric and hydroxybutiric acids, as opposed to fumaric acid in soil samples not inoculated. It is suggested that fluorescent pseudomonads could act indirectly in such metabolic processes by involving a lower rate of degradation of citric acid, in line with the effect of small organic acid on phytoextraction of heavy metals from soil. This is a first contribution to bioremediation of metal-contaminated sites with soil-to-plant transfer, using termite built structures. Further data are required on the efficiency of the bacterial strains isolated and on the processes involved.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Duponnois</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>IRD, UMR 113 CIRAD/INRA/IRD/AGRO-M/UM2, Laboratoire des Symbioses Tropicales et Méditerranéennes, LSTM, 34398 Montpellier, Cedex 05, France. robin.duponnois@ird.sn</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kisa</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Assigbetse</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prin</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thioulouse</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Issartel</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moulin</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lepage</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>09</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Sci Total Environ</MedlineTA>
<NlmUniqueID>0330500</NlmUniqueID>
<ISSNLinking>0048-9697</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020049" MajorTopicYN="N">Isoptera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011549" MajorTopicYN="N">Pseudomonas</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045868" MajorTopicYN="N">Sorghum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>06</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16989893</ArticleId>
<ArticleId IdType="pii">S0048-9697(06)00491-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.scitotenv.2006.07.008</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16989893
   |texte=   Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16989893" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020