Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?

Identifieur interne : 003030 ( Main/Corpus ); précédent : 003029; suivant : 003031

How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?

Auteurs : Ricardo Aroca ; Rosa Porcel ; Juan Manuel Ruiz-Lozano

Source :

RBID : pubmed:17286829

English descriptors

Abstract

Here, we evaluated how the arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties and root plasma membrane aquaporins (PIP) under different stresses sharing a common osmotic component. Phaseolus vulgaris plants were inoculated or not with the AM fungus Glomus intraradices, and subjected to drought, cold or salinity. Stress effects on root hydraulic conductance (L), PIP gene expression and protein abundance were evaluated. Under control conditions, L in AM plants was about half that in nonAM plants. However, L was decreased as a result of the three stresses in nonAM plants, while it was almost unchanged in AM plants. At the same time, PIP2 protein abundance and phosphorylation state presented the same trend as L. Finally, the expression of each PIP gene responded differently to each stress and was dependent on the AM fungal presence. Differential expression of the PIP genes studied under each stress depending on the AM fungal presence may indicate a specific function and regulation by the AM symbiosis of each gene under the specific conditions of each stress tested.

DOI: 10.1111/j.1469-8137.2006.01961.x
PubMed: 17286829

Links to Exploration step

pubmed:17286829

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?</title>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C/Profesor Alabareda 1, 18008, Granada, Spain. raroca@eez.csic.es</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17286829</idno>
<idno type="pmid">17286829</idno>
<idno type="doi">10.1111/j.1469-8137.2006.01961.x</idno>
<idno type="wicri:Area/Main/Corpus">003030</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003030</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?</title>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C/Profesor Alabareda 1, 18008, Granada, Spain. raroca@eez.csic.es</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="ISSN">0028-646X</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aquaporins (physiology)</term>
<term>Cell Membrane (chemistry)</term>
<term>Cold Temperature (MeSH)</term>
<term>Disasters (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Inorganic Chemicals (metabolism)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (physiology)</term>
<term>Osmosis (MeSH)</term>
<term>Phaseolus (genetics)</term>
<term>Phaseolus (physiology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (chemistry)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Inorganic Chemicals</term>
<term>Membrane Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Aquaporins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Membrane</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phaseolus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Phaseolus</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Disasters</term>
<term>Gene Expression</term>
<term>Genes, Plant</term>
<term>Osmosis</term>
<term>Plant Transpiration</term>
<term>Symbiosis</term>
<term>Water</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Here, we evaluated how the arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties and root plasma membrane aquaporins (PIP) under different stresses sharing a common osmotic component. Phaseolus vulgaris plants were inoculated or not with the AM fungus Glomus intraradices, and subjected to drought, cold or salinity. Stress effects on root hydraulic conductance (L), PIP gene expression and protein abundance were evaluated. Under control conditions, L in AM plants was about half that in nonAM plants. However, L was decreased as a result of the three stresses in nonAM plants, while it was almost unchanged in AM plants. At the same time, PIP2 protein abundance and phosphorylation state presented the same trend as L. Finally, the expression of each PIP gene responded differently to each stress and was dependent on the AM fungal presence. Differential expression of the PIP genes studied under each stress depending on the AM fungal presence may indicate a specific function and regulation by the AM symbiosis of each gene under the specific conditions of each stress tested.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17286829</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>06</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0028-646X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>173</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?</ArticleTitle>
<Pagination>
<MedlinePgn>808-16</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Here, we evaluated how the arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties and root plasma membrane aquaporins (PIP) under different stresses sharing a common osmotic component. Phaseolus vulgaris plants were inoculated or not with the AM fungus Glomus intraradices, and subjected to drought, cold or salinity. Stress effects on root hydraulic conductance (L), PIP gene expression and protein abundance were evaluated. Under control conditions, L in AM plants was about half that in nonAM plants. However, L was decreased as a result of the three stresses in nonAM plants, while it was almost unchanged in AM plants. At the same time, PIP2 protein abundance and phosphorylation state presented the same trend as L. Finally, the expression of each PIP gene responded differently to each stress and was dependent on the AM fungal presence. Differential expression of the PIP genes studied under each stress depending on the AM fungal presence may indicate a specific function and regulation by the AM symbiosis of each gene under the specific conditions of each stress tested.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aroca</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C/Profesor Alabareda 1, 18008, Granada, Spain. raroca@eez.csic.es</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Porcel</LastName>
<ForeName>Rosa</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Lozano</LastName>
<ForeName>Juan Manuel</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020346">Aquaporins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007287">Inorganic Chemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020346" MajorTopicYN="N">Aquaporins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004190" MajorTopicYN="N">Disasters</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007287" MajorTopicYN="N">Inorganic Chemicals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009995" MajorTopicYN="N">Osmosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027805" MajorTopicYN="N">Phaseolus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17286829</ArticleId>
<ArticleId IdType="pii">NPH1961</ArticleId>
<ArticleId IdType="doi">10.1111/j.1469-8137.2006.01961.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003030 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003030 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17286829
   |texte=   How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:17286829" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020