Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants.

Identifieur interne : 002F82 ( Main/Corpus ); précédent : 002F81; suivant : 002F83

Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants.

Auteurs : Farzad Jahromi ; Ricardo Aroca ; Rosa Porcel ; Juan Manuel Ruiz-Lozano

Source :

RBID : pubmed:17393053

English descriptors

Abstract

Increased salinization of arable land is expected to have devastating global effects in the coming years. Arbuscular mycorrhizal fungi (AMF) have been shown to improve plant tolerance to abiotic environmental factors such as salinity, but they can be themselves negatively affected by salinity. In this study, the first in vitro experiment analyzed the effects of 0, 50, or 100 mM NaCl on the development and sporulation of Glomus intraradices. In the second experiment, the effects of mycorrhization on the expression of key plant genes expected to be affected by salinity was evaluated. Results showed that the assayed isolate G. intraradices DAOM 197198 can be regarded as a moderately salt-tolerant AMF because it did not significantly decrease hyphal development or formation of branching absorbing structures at 50 mM NaCl. Results also showed that plants colonized by G. intraradices grew more than nonmycorrhizal plants. This effect was concomitant with a higher relative water content in AM plants, lower proline content, and expression of Lsp5cs gene (mainly at 50 mM NaCl), lower expression of the stress marker gene Lslea gene, and lower content of abscisic acid in roots of mycorrhizal plants as compared to nonmycorrhizal plants, which suggest that the AM fungus decreased salt stress injury. In addition, under salinity, AM symbiosis enhanced the expression of LsPIP1. Such enhanced gene expression could contribute to regulating root water permeability to better tolerate the osmotic stress generated by salinity.

DOI: 10.1007/s00248-007-9249-7
PubMed: 17393053

Links to Exploration step

pubmed:17393053

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants.</title>
<author>
<name sortKey="Jahromi, Farzad" sort="Jahromi, Farzad" uniqKey="Jahromi F" first="Farzad" last="Jahromi">Farzad Jahromi</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Prof. Albareda, 1. 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
</author>
<author>
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:17393053</idno>
<idno type="pmid">17393053</idno>
<idno type="doi">10.1007/s00248-007-9249-7</idno>
<idno type="wicri:Area/Main/Corpus">002F82</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F82</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants.</title>
<author>
<name sortKey="Jahromi, Farzad" sort="Jahromi, Farzad" uniqKey="Jahromi F" first="Farzad" last="Jahromi">Farzad Jahromi</name>
<affiliation>
<nlm:affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Prof. Albareda, 1. 18008, Granada, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aroca, Ricardo" sort="Aroca, Ricardo" uniqKey="Aroca R" first="Ricardo" last="Aroca">Ricardo Aroca</name>
</author>
<author>
<name sortKey="Porcel, Rosa" sort="Porcel, Rosa" uniqKey="Porcel R" first="Rosa" last="Porcel">Rosa Porcel</name>
</author>
<author>
<name sortKey="Ruiz Lozano, Juan Manuel" sort="Ruiz Lozano, Juan Manuel" uniqKey="Ruiz Lozano J" first="Juan Manuel" last="Ruiz-Lozano">Juan Manuel Ruiz-Lozano</name>
</author>
</analytic>
<series>
<title level="j">Microbial ecology</title>
<idno type="ISSN">0095-3628</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungi (drug effects)</term>
<term>Fungi (growth & development)</term>
<term>Fungi (physiology)</term>
<term>Lettuce (drug effects)</term>
<term>Lettuce (genetics)</term>
<term>Lettuce (microbiology)</term>
<term>Lettuce (physiology)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Oxygen Consumption (physiology)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Proline (metabolism)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Spores, Fungal (physiology)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Fungi</term>
<term>Lettuce</term>
<term>Mycorrhizae</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lettuce</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Proline</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lettuce</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
<term>Lettuce</term>
<term>Oxygen Consumption</term>
<term>Plant Leaves</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increased salinization of arable land is expected to have devastating global effects in the coming years. Arbuscular mycorrhizal fungi (AMF) have been shown to improve plant tolerance to abiotic environmental factors such as salinity, but they can be themselves negatively affected by salinity. In this study, the first in vitro experiment analyzed the effects of 0, 50, or 100 mM NaCl on the development and sporulation of Glomus intraradices. In the second experiment, the effects of mycorrhization on the expression of key plant genes expected to be affected by salinity was evaluated. Results showed that the assayed isolate G. intraradices DAOM 197198 can be regarded as a moderately salt-tolerant AMF because it did not significantly decrease hyphal development or formation of branching absorbing structures at 50 mM NaCl. Results also showed that plants colonized by G. intraradices grew more than nonmycorrhizal plants. This effect was concomitant with a higher relative water content in AM plants, lower proline content, and expression of Lsp5cs gene (mainly at 50 mM NaCl), lower expression of the stress marker gene Lslea gene, and lower content of abscisic acid in roots of mycorrhizal plants as compared to nonmycorrhizal plants, which suggest that the AM fungus decreased salt stress injury. In addition, under salinity, AM symbiosis enhanced the expression of LsPIP1. Such enhanced gene expression could contribute to regulating root water permeability to better tolerate the osmotic stress generated by salinity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17393053</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0095-3628</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>55</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Microbial ecology</Title>
<ISOAbbreviation>Microb Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants.</ArticleTitle>
<Pagination>
<MedlinePgn>45-53</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Increased salinization of arable land is expected to have devastating global effects in the coming years. Arbuscular mycorrhizal fungi (AMF) have been shown to improve plant tolerance to abiotic environmental factors such as salinity, but they can be themselves negatively affected by salinity. In this study, the first in vitro experiment analyzed the effects of 0, 50, or 100 mM NaCl on the development and sporulation of Glomus intraradices. In the second experiment, the effects of mycorrhization on the expression of key plant genes expected to be affected by salinity was evaluated. Results showed that the assayed isolate G. intraradices DAOM 197198 can be regarded as a moderately salt-tolerant AMF because it did not significantly decrease hyphal development or formation of branching absorbing structures at 50 mM NaCl. Results also showed that plants colonized by G. intraradices grew more than nonmycorrhizal plants. This effect was concomitant with a higher relative water content in AM plants, lower proline content, and expression of Lsp5cs gene (mainly at 50 mM NaCl), lower expression of the stress marker gene Lslea gene, and lower content of abscisic acid in roots of mycorrhizal plants as compared to nonmycorrhizal plants, which suggest that the AM fungus decreased salt stress injury. In addition, under salinity, AM symbiosis enhanced the expression of LsPIP1. Such enhanced gene expression could contribute to regulating root water permeability to better tolerate the osmotic stress generated by salinity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jahromi</LastName>
<ForeName>Farzad</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Prof. Albareda, 1. 18008, Granada, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aroca</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Porcel</LastName>
<ForeName>Rosa</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz-Lozano</LastName>
<ForeName>Juan Manuel</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>03</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Microb Ecol</MedlineTA>
<NlmUniqueID>7500663</NlmUniqueID>
<ISSNLinking>0095-3628</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9DLQ4CIU6V</RegistryNumber>
<NameOfSubstance UI="D011392">Proline</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018545" MajorTopicYN="N">Lettuce</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010101" MajorTopicYN="N">Oxygen Consumption</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011392" MajorTopicYN="N">Proline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17393053</ArticleId>
<ArticleId IdType="doi">10.1007/s00248-007-9249-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2000 May 1;1465(1-2):324-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10748263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Apr;13(4):889-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Aug;108(4):1387-1394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2005 Dec 15;444(2):139-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16309626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):645-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Jun 5;236(4806):1299-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17770331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1591-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Feb;61(2):456-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):153-161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Feb;60(3):389-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16514562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Jul;209(1):77-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry (Mosc). 2004 Oct;69(10):1099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 Mar;163(5):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Mar;54(5):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1997 Oct;38(10 ):1095-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9399433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Biochem Physiol. 1959 Aug;37(8):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13671378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 May;84(1):61-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2003 Sep;160(9):1073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Nov;218(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14513379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F82 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002F82 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17393053
   |texte=   Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:17393053" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020