Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.

Identifieur interne : 002D30 ( Main/Corpus ); précédent : 002D29; suivant : 002D31

SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.

Auteurs : Hassen Gherbi ; Katharina Markmann ; Sergio Svistoonoff ; Joan Estevan ; Daphné Autran ; Gabor Giczey ; Florence Auguy ; Benjamin Péret ; Laurent Laplaze ; Claudine Franche ; Martin Parniske ; Didier Bogusz

Source :

RBID : pubmed:18316735

English descriptors

Abstract

Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host-symbiont interaction have been identified in legumes, the genetic basis of actinorhiza formation is unknown. Here, we show that the receptor-like kinase gene SymRK, which is required for nodulation in legumes, is also necessary for actinorhiza formation in the tree Casuarina glauca. This indicates that both types of nodulation symbiosis share genetic components. Like several other legume genes involved in the interaction with rhizobia, SymRK is also required for the interaction with arbuscular mycorrhiza (AM) fungi. We show that SymRK is involved in AM formation in C. glauca as well and can restore both nodulation and AM symbioses in a Lotus japonicus symrk mutant. Taken together, our results demonstrate that SymRK functions as a vital component of the genetic basis for both plant-fungal and plant-bacterial endosymbioses and is conserved between legumes and actinorhiza-forming Fagales.

DOI: 10.1073/pnas.0710618105
PubMed: 18316735
PubMed Central: PMC2290763

Links to Exploration step

pubmed:18316735

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.</title>
<author>
<name sortKey="Gherbi, Hassen" sort="Gherbi, Hassen" uniqKey="Gherbi H" first="Hassen" last="Gherbi">Hassen Gherbi</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Markmann, Katharina" sort="Markmann, Katharina" uniqKey="Markmann K" first="Katharina" last="Markmann">Katharina Markmann</name>
</author>
<author>
<name sortKey="Svistoonoff, Sergio" sort="Svistoonoff, Sergio" uniqKey="Svistoonoff S" first="Sergio" last="Svistoonoff">Sergio Svistoonoff</name>
</author>
<author>
<name sortKey="Estevan, Joan" sort="Estevan, Joan" uniqKey="Estevan J" first="Joan" last="Estevan">Joan Estevan</name>
</author>
<author>
<name sortKey="Autran, Daphne" sort="Autran, Daphne" uniqKey="Autran D" first="Daphné" last="Autran">Daphné Autran</name>
</author>
<author>
<name sortKey="Giczey, Gabor" sort="Giczey, Gabor" uniqKey="Giczey G" first="Gabor" last="Giczey">Gabor Giczey</name>
</author>
<author>
<name sortKey="Auguy, Florence" sort="Auguy, Florence" uniqKey="Auguy F" first="Florence" last="Auguy">Florence Auguy</name>
</author>
<author>
<name sortKey="Peret, Benjamin" sort="Peret, Benjamin" uniqKey="Peret B" first="Benjamin" last="Péret">Benjamin Péret</name>
</author>
<author>
<name sortKey="Laplaze, Laurent" sort="Laplaze, Laurent" uniqKey="Laplaze L" first="Laurent" last="Laplaze">Laurent Laplaze</name>
</author>
<author>
<name sortKey="Franche, Claudine" sort="Franche, Claudine" uniqKey="Franche C" first="Claudine" last="Franche">Claudine Franche</name>
</author>
<author>
<name sortKey="Parniske, Martin" sort="Parniske, Martin" uniqKey="Parniske M" first="Martin" last="Parniske">Martin Parniske</name>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18316735</idno>
<idno type="pmid">18316735</idno>
<idno type="doi">10.1073/pnas.0710618105</idno>
<idno type="pmc">PMC2290763</idno>
<idno type="wicri:Area/Main/Corpus">002D30</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.</title>
<author>
<name sortKey="Gherbi, Hassen" sort="Gherbi, Hassen" uniqKey="Gherbi H" first="Hassen" last="Gherbi">Hassen Gherbi</name>
<affiliation>
<nlm:affiliation>Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Markmann, Katharina" sort="Markmann, Katharina" uniqKey="Markmann K" first="Katharina" last="Markmann">Katharina Markmann</name>
</author>
<author>
<name sortKey="Svistoonoff, Sergio" sort="Svistoonoff, Sergio" uniqKey="Svistoonoff S" first="Sergio" last="Svistoonoff">Sergio Svistoonoff</name>
</author>
<author>
<name sortKey="Estevan, Joan" sort="Estevan, Joan" uniqKey="Estevan J" first="Joan" last="Estevan">Joan Estevan</name>
</author>
<author>
<name sortKey="Autran, Daphne" sort="Autran, Daphne" uniqKey="Autran D" first="Daphné" last="Autran">Daphné Autran</name>
</author>
<author>
<name sortKey="Giczey, Gabor" sort="Giczey, Gabor" uniqKey="Giczey G" first="Gabor" last="Giczey">Gabor Giczey</name>
</author>
<author>
<name sortKey="Auguy, Florence" sort="Auguy, Florence" uniqKey="Auguy F" first="Florence" last="Auguy">Florence Auguy</name>
</author>
<author>
<name sortKey="Peret, Benjamin" sort="Peret, Benjamin" uniqKey="Peret B" first="Benjamin" last="Péret">Benjamin Péret</name>
</author>
<author>
<name sortKey="Laplaze, Laurent" sort="Laplaze, Laurent" uniqKey="Laplaze L" first="Laurent" last="Laplaze">Laurent Laplaze</name>
</author>
<author>
<name sortKey="Franche, Claudine" sort="Franche, Claudine" uniqKey="Franche C" first="Claudine" last="Franche">Claudine Franche</name>
</author>
<author>
<name sortKey="Parniske, Martin" sort="Parniske, Martin" uniqKey="Parniske M" first="Martin" last="Parniske">Martin Parniske</name>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Frankia (physiology)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Lotus (cytology)</term>
<term>Lotus (enzymology)</term>
<term>Lotus (genetics)</term>
<term>Lotus (microbiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Open Reading Frames (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (isolation & purification)</term>
<term>Plant Roots (cytology)</term>
<term>Plant Roots (enzymology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Protein Kinases (isolation & purification)</term>
<term>Protein Kinases (metabolism)</term>
<term>Rhizobium (physiology)</term>
<term>Root Nodules, Plant (cytology)</term>
<term>Root Nodules, Plant (enzymology)</term>
<term>Root Nodules, Plant (microbiology)</term>
<term>Symbiosis (MeSH)</term>
<term>Trees (cytology)</term>
<term>Trees (enzymology)</term>
<term>Trees (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Plant Proteins</term>
<term>Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Lotus</term>
<term>Plant Roots</term>
<term>Root Nodules, Plant</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Lotus</term>
<term>Plant Roots</term>
<term>Root Nodules, Plant</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lotus</term>
<term>Mutation</term>
<term>Open Reading Frames</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lotus</term>
<term>Plant Roots</term>
<term>Root Nodules, Plant</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Frankia</term>
<term>Mycorrhizae</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Complementation Test</term>
<term>Molecular Sequence Data</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host-symbiont interaction have been identified in legumes, the genetic basis of actinorhiza formation is unknown. Here, we show that the receptor-like kinase gene SymRK, which is required for nodulation in legumes, is also necessary for actinorhiza formation in the tree Casuarina glauca. This indicates that both types of nodulation symbiosis share genetic components. Like several other legume genes involved in the interaction with rhizobia, SymRK is also required for the interaction with arbuscular mycorrhiza (AM) fungi. We show that SymRK is involved in AM formation in C. glauca as well and can restore both nodulation and AM symbioses in a Lotus japonicus symrk mutant. Taken together, our results demonstrate that SymRK functions as a vital component of the genetic basis for both plant-fungal and plant-bacterial endosymbioses and is conserved between legumes and actinorhiza-forming Fagales.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18316735</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2008</Year>
<Month>Mar</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.</ArticleTitle>
<Pagination>
<MedlinePgn>4928-32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0710618105</ELocationID>
<Abstract>
<AbstractText>Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host-symbiont interaction have been identified in legumes, the genetic basis of actinorhiza formation is unknown. Here, we show that the receptor-like kinase gene SymRK, which is required for nodulation in legumes, is also necessary for actinorhiza formation in the tree Casuarina glauca. This indicates that both types of nodulation symbiosis share genetic components. Like several other legume genes involved in the interaction with rhizobia, SymRK is also required for the interaction with arbuscular mycorrhiza (AM) fungi. We show that SymRK is involved in AM formation in C. glauca as well and can restore both nodulation and AM symbioses in a Lotus japonicus symrk mutant. Taken together, our results demonstrate that SymRK functions as a vital component of the genetic basis for both plant-fungal and plant-bacterial endosymbioses and is conserved between legumes and actinorhiza-forming Fagales.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gherbi</LastName>
<ForeName>Hassen</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Equipe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC), Institut de Recherche pour le Développement (IRD), 911 Avenue Agropolis, 34394 Montpellier Cedex 5, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Markmann</LastName>
<ForeName>Katharina</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Svistoonoff</LastName>
<ForeName>Sergio</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Estevan</LastName>
<ForeName>Joan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Autran</LastName>
<ForeName>Daphné</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Giczey</LastName>
<ForeName>Gabor</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Auguy</LastName>
<ForeName>Florence</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Péret</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laplaze</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Franche</LastName>
<ForeName>Claudine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parniske</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bogusz</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>EU273286</AccessionNumber>
<AccessionNumber>EU294188</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>03</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4537-8</RefSource>
<PMID Version="1">18349141</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D040161" MajorTopicYN="N">Frankia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070116" MajorTopicYN="N">Lotus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053204" MajorTopicYN="N">Root Nodules, Plant</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18316735</ArticleId>
<ArticleId IdType="pii">0710618105</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0710618105</ArticleId>
<ArticleId IdType="pmc">PMC2290763</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2007 Aug;5(8):619-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1986 Sep;16(2):124-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3018814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1998 Oct;260(1):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9829835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jun;15(4):283-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Nov;7(11):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Sep;27(6):581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11576441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Apr;172(4):2491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1968 Aug;43(8):1185-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16656902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Aug;18(8):869-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16134899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jan;17(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2002 Jun;12(6):79R-105R</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):681-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):959-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Aug;16(8):663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1899-1913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jul;16(7):600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1957 Apr;16(2):374-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13416514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2545-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002D30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18316735
   |texte=   SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:18316735" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020