Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not.

Identifieur interne : 002C74 ( Main/Corpus ); précédent : 002C73; suivant : 002C75

Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not.

Auteurs : Tina Riedel ; Karin Groten ; Ian T. Baldwin

Source :

RBID : pubmed:18507809

English descriptors

Abstract

Phytohormones are thought to mediate plant-arbuscular mycorrhizal (AM) interactions. To explore the role of phytohormones in the interaction between Nicotiana attenuata and Glomus intraradices, we analysed levels of jasmonic acid (JA) and its amino acid conjugate JA-isoleucine/JA-leucine (JA-Ile), salicylic acid (SA) and ethylene in either infected or non-infected N. attenuata wild-type (WT) plants growing in soils that mimic the nutrient supply rates found in the plant's native environment. Under these conditions, the infection decreases plant growth and reproductive performance. Levels of JA, JA-Ile and SA did not change upon infection, but ethylene release was slightly decreased. Transgenic N. attenuata plants defective in JA signalling (aslox3 and ircoi1) did not differ significantly in growth or reproductive performance compared with infected WT. Furthermore, no difference in infection rates could be observed. Transgenic plants unable to produce (iraco) or perceive (etr1) ethylene showed significantly larger decreases in growth and number of seed capsules produced between infected and non-infected plants compared with WT plants. We conclude that ethylene, rather than JA, signalling plays a role in the interaction between N. attenuata and AM, from which the plant does not realize a fitness benefit.

DOI: 10.1111/j.1365-3040.2008.01827.x
PubMed: 18507809

Links to Exploration step

pubmed:18507809

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not.</title>
<author>
<name sortKey="Riedel, Tina" sort="Riedel, Tina" uniqKey="Riedel T" first="Tina" last="Riedel">Tina Riedel</name>
<affiliation>
<nlm:affiliation>Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Groten, Karin" sort="Groten, Karin" uniqKey="Groten K" first="Karin" last="Groten">Karin Groten</name>
</author>
<author>
<name sortKey="Baldwin, Ian T" sort="Baldwin, Ian T" uniqKey="Baldwin I" first="Ian T" last="Baldwin">Ian T. Baldwin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18507809</idno>
<idno type="pmid">18507809</idno>
<idno type="doi">10.1111/j.1365-3040.2008.01827.x</idno>
<idno type="wicri:Area/Main/Corpus">002C74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not.</title>
<author>
<name sortKey="Riedel, Tina" sort="Riedel, Tina" uniqKey="Riedel T" first="Tina" last="Riedel">Tina Riedel</name>
<affiliation>
<nlm:affiliation>Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Groten, Karin" sort="Groten, Karin" uniqKey="Groten K" first="Karin" last="Groten">Karin Groten</name>
</author>
<author>
<name sortKey="Baldwin, Ian T" sort="Baldwin, Ian T" uniqKey="Baldwin I" first="Ian T" last="Baldwin">Ian T. Baldwin</name>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyclopentanes (chemistry)</term>
<term>Cyclopentanes (metabolism)</term>
<term>DNA, Fungal (genetics)</term>
<term>Ethylenes (chemistry)</term>
<term>Ethylenes (metabolism)</term>
<term>Genotype (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Oxylipins (chemistry)</term>
<term>Oxylipins (metabolism)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (growth & development)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Salicylic Acid (chemistry)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Seeds (genetics)</term>
<term>Seeds (growth & development)</term>
<term>Seeds (metabolism)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (growth & development)</term>
<term>Tobacco (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cyclopentanes</term>
<term>Ethylenes</term>
<term>Oxylipins</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclopentanes</term>
<term>Ethylenes</term>
<term>Oxylipins</term>
<term>Plant Growth Regulators</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Seeds</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Seeds</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Seeds</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genotype</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytohormones are thought to mediate plant-arbuscular mycorrhizal (AM) interactions. To explore the role of phytohormones in the interaction between Nicotiana attenuata and Glomus intraradices, we analysed levels of jasmonic acid (JA) and its amino acid conjugate JA-isoleucine/JA-leucine (JA-Ile), salicylic acid (SA) and ethylene in either infected or non-infected N. attenuata wild-type (WT) plants growing in soils that mimic the nutrient supply rates found in the plant's native environment. Under these conditions, the infection decreases plant growth and reproductive performance. Levels of JA, JA-Ile and SA did not change upon infection, but ethylene release was slightly decreased. Transgenic N. attenuata plants defective in JA signalling (aslox3 and ircoi1) did not differ significantly in growth or reproductive performance compared with infected WT. Furthermore, no difference in infection rates could be observed. Transgenic plants unable to produce (iraco) or perceive (etr1) ethylene showed significantly larger decreases in growth and number of seed capsules produced between infected and non-infected plants compared with WT plants. We conclude that ethylene, rather than JA, signalling plays a role in the interaction between N. attenuata and AM, from which the plant does not realize a fitness benefit.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18507809</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>31</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2008</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not.</ArticleTitle>
<Pagination>
<MedlinePgn>1203-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1365-3040.2008.01827.x</ELocationID>
<Abstract>
<AbstractText>Phytohormones are thought to mediate plant-arbuscular mycorrhizal (AM) interactions. To explore the role of phytohormones in the interaction between Nicotiana attenuata and Glomus intraradices, we analysed levels of jasmonic acid (JA) and its amino acid conjugate JA-isoleucine/JA-leucine (JA-Ile), salicylic acid (SA) and ethylene in either infected or non-infected N. attenuata wild-type (WT) plants growing in soils that mimic the nutrient supply rates found in the plant's native environment. Under these conditions, the infection decreases plant growth and reproductive performance. Levels of JA, JA-Ile and SA did not change upon infection, but ethylene release was slightly decreased. Transgenic N. attenuata plants defective in JA signalling (aslox3 and ircoi1) did not differ significantly in growth or reproductive performance compared with infected WT. Furthermore, no difference in infection rates could be observed. Transgenic plants unable to produce (iraco) or perceive (etr1) ethylene showed significantly larger decreases in growth and number of seed capsules produced between infected and non-infected plants compared with WT plants. We conclude that ethylene, rather than JA, signalling plays a role in the interaction between N. attenuata and AM, from which the plant does not realize a fitness benefit.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Riedel</LastName>
<ForeName>Tina</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Groten</LastName>
<ForeName>Karin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baldwin</LastName>
<ForeName>Ian T</ForeName>
<Initials>IT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18507809</ArticleId>
<ArticleId IdType="pii">PCE1827</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-3040.2008.01827.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002C74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18507809
   |texte=   Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:18507809" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020