Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).

Identifieur interne : 002B31 ( Main/Corpus ); précédent : 002B30; suivant : 002B32

Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).

Auteurs : Takeshi Taniguchi ; Ryota Kataoka ; Shigenobu Tamai ; Norikazu Yamanaka ; Kazuyoshi Futai

Source :

RBID : pubmed:19015894

English descriptors

Abstract

The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was detected in soil at depths of 0-5 and 5-10 cm from both these areas. This indicates that the disease severity of pine seedlings in this study was influenced by environmental conditions rather than the distribution of inoculum potential.

DOI: 10.1007/s00572-008-0212-3
PubMed: 19015894

Links to Exploration step

pubmed:19015894

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).</title>
<author>
<name sortKey="Taniguchi, Takeshi" sort="Taniguchi, Takeshi" uniqKey="Taniguchi T" first="Takeshi" last="Taniguchi">Takeshi Taniguchi</name>
<affiliation>
<nlm:affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. tanitake@hotmail.co.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kataoka, Ryota" sort="Kataoka, Ryota" uniqKey="Kataoka R" first="Ryota" last="Kataoka">Ryota Kataoka</name>
<affiliation>
<nlm:affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tamai, Shigenobu" sort="Tamai, Shigenobu" uniqKey="Tamai S" first="Shigenobu" last="Tamai">Shigenobu Tamai</name>
<affiliation>
<nlm:affiliation>Revegetation and Grassland Development, Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yamanaka, Norikazu" sort="Yamanaka, Norikazu" uniqKey="Yamanaka N" first="Norikazu" last="Yamanaka">Norikazu Yamanaka</name>
<affiliation>
<nlm:affiliation>Revegetation and Grassland Development, Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Futai, Kazuyoshi" sort="Futai, Kazuyoshi" uniqKey="Futai K" first="Kazuyoshi" last="Futai">Kazuyoshi Futai</name>
<affiliation>
<nlm:affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19015894</idno>
<idno type="pmid">19015894</idno>
<idno type="doi">10.1007/s00572-008-0212-3</idno>
<idno type="wicri:Area/Main/Corpus">002B31</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B31</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).</title>
<author>
<name sortKey="Taniguchi, Takeshi" sort="Taniguchi, Takeshi" uniqKey="Taniguchi T" first="Takeshi" last="Taniguchi">Takeshi Taniguchi</name>
<affiliation>
<nlm:affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. tanitake@hotmail.co.jp.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kataoka, Ryota" sort="Kataoka, Ryota" uniqKey="Kataoka R" first="Ryota" last="Kataoka">Ryota Kataoka</name>
<affiliation>
<nlm:affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tamai, Shigenobu" sort="Tamai, Shigenobu" uniqKey="Tamai S" first="Shigenobu" last="Tamai">Shigenobu Tamai</name>
<affiliation>
<nlm:affiliation>Revegetation and Grassland Development, Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yamanaka, Norikazu" sort="Yamanaka, Norikazu" uniqKey="Yamanaka N" first="Norikazu" last="Yamanaka">Norikazu Yamanaka</name>
<affiliation>
<nlm:affiliation>Revegetation and Grassland Development, Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Futai, Kazuyoshi" sort="Futai, Kazuyoshi" uniqKey="Futai K" first="Kazuyoshi" last="Futai">Kazuyoshi Futai</name>
<affiliation>
<nlm:affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Ribosomal Spacer (genetics)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Fungi (genetics)</term>
<term>Fungi (isolation & purification)</term>
<term>Fungi (physiology)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (isolation & purification)</term>
<term>Mycorrhizae (physiology)</term>
<term>Nitrogen (analysis)</term>
<term>Phosphates (analysis)</term>
<term>Pinus (microbiology)</term>
<term>Robinia (microbiology)</term>
<term>Soil (analysis)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Nitrogen</term>
<term>Phosphates</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Ribosomal Spacer</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus</term>
<term>Robinia</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Hydrogen-Ion Concentration</term>
<term>Molecular Sequence Data</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was detected in soil at depths of 0-5 and 5-10 cm from both these areas. This indicates that the disease severity of pine seedlings in this study was influenced by environmental conditions rather than the distribution of inoculum potential.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19015894</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).</ArticleTitle>
<Pagination>
<MedlinePgn>231-238</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-008-0212-3</ELocationID>
<Abstract>
<AbstractText>The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was detected in soil at depths of 0-5 and 5-10 cm from both these areas. This indicates that the disease severity of pine seedlings in this study was influenced by environmental conditions rather than the distribution of inoculum potential.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Taniguchi</LastName>
<ForeName>Takeshi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. tanitake@hotmail.co.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kataoka</LastName>
<ForeName>Ryota</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tamai</LastName>
<ForeName>Shigenobu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Revegetation and Grassland Development, Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yamanaka</LastName>
<ForeName>Norikazu</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Revegetation and Grassland Development, Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Futai</LastName>
<ForeName>Kazuyoshi</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental Mycoscience, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AB467358</AccessionNumber>
<AccessionNumber>AB467359</AccessionNumber>
<AccessionNumber>AB467360</AccessionNumber>
<AccessionNumber>AB467361</AccessionNumber>
<AccessionNumber>AB467362</AccessionNumber>
<AccessionNumber>AB467363</AccessionNumber>
<AccessionNumber>AB467364</AccessionNumber>
<AccessionNumber>AB467365</AccessionNumber>
<AccessionNumber>AB467366</AccessionNumber>
<AccessionNumber>AB467367</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021903">DNA, Ribosomal Spacer</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D021903" MajorTopicYN="N">DNA, Ribosomal Spacer</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031301" MajorTopicYN="N">Robinia</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19015894</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-008-0212-3</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-008-0212-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2005 Apr;166(1):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(2):322-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Nov;61(11):3972-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8526511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Sep;87(9):2278-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16995628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):164-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002B31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19015894
   |texte=   Distribution of ectomycorrhizal and pathogenic fungi in soil along a vegetational change from Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19015894" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020