Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.

Identifieur interne : 002A88 ( Main/Corpus ); précédent : 002A87; suivant : 002A89

Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.

Auteurs : E J Grace ; O. Cotsaftis ; M. Tester ; F A Smith ; S E Smith

Source :

RBID : pubmed:19140934

English descriptors

Abstract

Here, we used phosphorus-32 (32P) labelling in compartmented pots combined with quantitative real-time polymerase chain reaction (PCR) analysis of phosphate(Pi) transporter gene expression to investigate regulation of Pi uptake pathways in barley (Hordeum vulgare), an arbuscular mycorrhizal (AM) plant that does not show strong positive growth responses to colonization.Barley was colonized well by Glomus intraradices and poorly by Glomus geosporum,but both fungi induced significant and similar growth depressions compared with non mycorrhizal controls. The lack of correlation between per cent colonization and extent of growth depression suggests that the latter is not related to carbon drain to the fungus. The contribution of the AM Pi uptake pathway for the two fungi was, in general,related to per cent colonization and expression of the AM-inducible Pi transporter gene, HvPT8, but not to plant responsiveness. Glomus intraradices contributed 48%of total plant P whereas G. geosporum contributed very little.The growth depression in plants where the AM uptake pathway was functional suggests that the contribution of the direct Pi uptake pathway via root hairs and epidermis was decreased. This decrease was not correlated with downregulation of the epidermal-expressed Pi transporter genes, HvPT1 and HvPT2. We hypothesize post-transcriptional or post-translational control of this transport process by AM colonization.

DOI: 10.1111/j.1469-8137.2008.02720.x
PubMed: 19140934

Links to Exploration step

pubmed:19140934

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.</title>
<author>
<name sortKey="Grace, E J" sort="Grace, E J" uniqKey="Grace E" first="E J" last="Grace">E J Grace</name>
<affiliation>
<nlm:affiliation>The University of Adelaide, Adelaide, SA 5005, Australia. emily.grace@adelaide.edu.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cotsaftis, O" sort="Cotsaftis, O" uniqKey="Cotsaftis O" first="O" last="Cotsaftis">O. Cotsaftis</name>
</author>
<author>
<name sortKey="Tester, M" sort="Tester, M" uniqKey="Tester M" first="M" last="Tester">M. Tester</name>
</author>
<author>
<name sortKey="Smith, F A" sort="Smith, F A" uniqKey="Smith F" first="F A" last="Smith">F A Smith</name>
</author>
<author>
<name sortKey="Smith, S E" sort="Smith, S E" uniqKey="Smith S" first="S E" last="Smith">S E Smith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19140934</idno>
<idno type="pmid">19140934</idno>
<idno type="doi">10.1111/j.1469-8137.2008.02720.x</idno>
<idno type="wicri:Area/Main/Corpus">002A88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.</title>
<author>
<name sortKey="Grace, E J" sort="Grace, E J" uniqKey="Grace E" first="E J" last="Grace">E J Grace</name>
<affiliation>
<nlm:affiliation>The University of Adelaide, Adelaide, SA 5005, Australia. emily.grace@adelaide.edu.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cotsaftis, O" sort="Cotsaftis, O" uniqKey="Cotsaftis O" first="O" last="Cotsaftis">O. Cotsaftis</name>
</author>
<author>
<name sortKey="Tester, M" sort="Tester, M" uniqKey="Tester M" first="M" last="Tester">M. Tester</name>
</author>
<author>
<name sortKey="Smith, F A" sort="Smith, F A" uniqKey="Smith F" first="F A" last="Smith">F A Smith</name>
</author>
<author>
<name sortKey="Smith, S E" sort="Smith, S E" uniqKey="Smith S" first="S E" last="Smith">S E Smith</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (genetics)</term>
<term>Biological Transport (physiology)</term>
<term>Glomeromycota (metabolism)</term>
<term>Glomeromycota (physiology)</term>
<term>Hordeum (growth & development)</term>
<term>Hordeum (metabolism)</term>
<term>Hordeum (microbiology)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phosphate Transport Proteins (genetics)</term>
<term>Phosphate Transport Proteins (metabolism)</term>
<term>Phosphorus (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phosphate Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Biological Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Hordeum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Glomeromycota</term>
<term>Hordeum</term>
<term>Mycorrhizae</term>
<term>Phosphate Transport Proteins</term>
<term>Phosphorus</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hordeum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Biological Transport</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Here, we used phosphorus-32 (32P) labelling in compartmented pots combined with quantitative real-time polymerase chain reaction (PCR) analysis of phosphate(Pi) transporter gene expression to investigate regulation of Pi uptake pathways in barley (Hordeum vulgare), an arbuscular mycorrhizal (AM) plant that does not show strong positive growth responses to colonization.Barley was colonized well by Glomus intraradices and poorly by Glomus geosporum,but both fungi induced significant and similar growth depressions compared with non mycorrhizal controls. The lack of correlation between per cent colonization and extent of growth depression suggests that the latter is not related to carbon drain to the fungus. The contribution of the AM Pi uptake pathway for the two fungi was, in general,related to per cent colonization and expression of the AM-inducible Pi transporter gene, HvPT8, but not to plant responsiveness. Glomus intraradices contributed 48%of total plant P whereas G. geosporum contributed very little.The growth depression in plants where the AM uptake pathway was functional suggests that the contribution of the direct Pi uptake pathway via root hairs and epidermis was decreased. This decrease was not correlated with downregulation of the epidermal-expressed Pi transporter genes, HvPT1 and HvPT2. We hypothesize post-transcriptional or post-translational control of this transport process by AM colonization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19140934</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>181</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.</ArticleTitle>
<Pagination>
<MedlinePgn>938-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1469-8137.2008.02720.x</ELocationID>
<Abstract>
<AbstractText>Here, we used phosphorus-32 (32P) labelling in compartmented pots combined with quantitative real-time polymerase chain reaction (PCR) analysis of phosphate(Pi) transporter gene expression to investigate regulation of Pi uptake pathways in barley (Hordeum vulgare), an arbuscular mycorrhizal (AM) plant that does not show strong positive growth responses to colonization.Barley was colonized well by Glomus intraradices and poorly by Glomus geosporum,but both fungi induced significant and similar growth depressions compared with non mycorrhizal controls. The lack of correlation between per cent colonization and extent of growth depression suggests that the latter is not related to carbon drain to the fungus. The contribution of the AM Pi uptake pathway for the two fungi was, in general,related to per cent colonization and expression of the AM-inducible Pi transporter gene, HvPT8, but not to plant responsiveness. Glomus intraradices contributed 48%of total plant P whereas G. geosporum contributed very little.The growth depression in plants where the AM uptake pathway was functional suggests that the contribution of the direct Pi uptake pathway via root hairs and epidermis was decreased. This decrease was not correlated with downregulation of the epidermal-expressed Pi transporter genes, HvPT1 and HvPT2. We hypothesize post-transcriptional or post-translational control of this transport process by AM colonization.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Grace</LastName>
<ForeName>E J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>The University of Adelaide, Adelaide, SA 5005, Australia. emily.grace@adelaide.edu.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cotsaftis</LastName>
<ForeName>O</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tester</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>F A</ForeName>
<Initials>FA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>S E</ForeName>
<Initials>SE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028061">Phosphate Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028061" MajorTopicYN="N">Phosphate Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19140934</ArticleId>
<ArticleId IdType="pii">NPH2720</ArticleId>
<ArticleId IdType="doi">10.1111/j.1469-8137.2008.02720.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002A88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19140934
   |texte=   Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19140934" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020