Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.

Identifieur interne : 002A74 ( Main/Corpus ); précédent : 002A73; suivant : 002A75

Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.

Auteurs : S Karen Gomez ; Hélène Javot ; Prasit Deewatthanawong ; Ivone Torres-Jerez ; Yuhong Tang ; Elison B. Blancaflor ; Michael K. Udvardi ; Maria J. Harrison

Source :

RBID : pubmed:19161626

English descriptors

Abstract

BACKGROUND

Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM) of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR.

RESULTS

This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM)-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis.

CONCLUSION

Transcript profiling using the Affymetrix GeneChip Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was developed to enable laser microdissection of M. truncatula root cortical cells. LM coupled with RT-PCR provided spatial gene expression information for both symbionts and expanded current information available for gene expression in cortical cells containing arbuscules.


DOI: 10.1186/1471-2229-9-10
PubMed: 19161626
PubMed Central: PMC2649119

Links to Exploration step

pubmed:19161626

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Gomez, S Karen" sort="Gomez, S Karen" uniqKey="Gomez S" first="S Karen" last="Gomez">S Karen Gomez</name>
<affiliation>
<nlm:affiliation>Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA. skg34@cornell.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Javot, Helene" sort="Javot, Helene" uniqKey="Javot H" first="Hélène" last="Javot">Hélène Javot</name>
</author>
<author>
<name sortKey="Deewatthanawong, Prasit" sort="Deewatthanawong, Prasit" uniqKey="Deewatthanawong P" first="Prasit" last="Deewatthanawong">Prasit Deewatthanawong</name>
</author>
<author>
<name sortKey="Torres Jerez, Ivone" sort="Torres Jerez, Ivone" uniqKey="Torres Jerez I" first="Ivone" last="Torres-Jerez">Ivone Torres-Jerez</name>
</author>
<author>
<name sortKey="Tang, Yuhong" sort="Tang, Yuhong" uniqKey="Tang Y" first="Yuhong" last="Tang">Yuhong Tang</name>
</author>
<author>
<name sortKey="Blancaflor, Elison B" sort="Blancaflor, Elison B" uniqKey="Blancaflor E" first="Elison B" last="Blancaflor">Elison B. Blancaflor</name>
</author>
<author>
<name sortKey="Udvardi, Michael K" sort="Udvardi, Michael K" uniqKey="Udvardi M" first="Michael K" last="Udvardi">Michael K. Udvardi</name>
</author>
<author>
<name sortKey="Harrison, Maria J" sort="Harrison, Maria J" uniqKey="Harrison M" first="Maria J" last="Harrison">Maria J. Harrison</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19161626</idno>
<idno type="pmid">19161626</idno>
<idno type="doi">10.1186/1471-2229-9-10</idno>
<idno type="pmc">PMC2649119</idno>
<idno type="wicri:Area/Main/Corpus">002A74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Gomez, S Karen" sort="Gomez, S Karen" uniqKey="Gomez S" first="S Karen" last="Gomez">S Karen Gomez</name>
<affiliation>
<nlm:affiliation>Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA. skg34@cornell.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Javot, Helene" sort="Javot, Helene" uniqKey="Javot H" first="Hélène" last="Javot">Hélène Javot</name>
</author>
<author>
<name sortKey="Deewatthanawong, Prasit" sort="Deewatthanawong, Prasit" uniqKey="Deewatthanawong P" first="Prasit" last="Deewatthanawong">Prasit Deewatthanawong</name>
</author>
<author>
<name sortKey="Torres Jerez, Ivone" sort="Torres Jerez, Ivone" uniqKey="Torres Jerez I" first="Ivone" last="Torres-Jerez">Ivone Torres-Jerez</name>
</author>
<author>
<name sortKey="Tang, Yuhong" sort="Tang, Yuhong" uniqKey="Tang Y" first="Yuhong" last="Tang">Yuhong Tang</name>
</author>
<author>
<name sortKey="Blancaflor, Elison B" sort="Blancaflor, Elison B" uniqKey="Blancaflor E" first="Elison B" last="Blancaflor">Elison B. Blancaflor</name>
</author>
<author>
<name sortKey="Udvardi, Michael K" sort="Udvardi, Michael K" uniqKey="Udvardi M" first="Michael K" last="Udvardi">Michael K. Udvardi</name>
</author>
<author>
<name sortKey="Harrison, Maria J" sort="Harrison, Maria J" uniqKey="Harrison M" first="Maria J" last="Harrison">Maria J. Harrison</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (growth & development)</term>
<term>Medicago truncatula (genetics)</term>
<term>Medicago truncatula (microbiology)</term>
<term>Microdissection (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>RNA, Plant (genetics)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Medicago truncatula</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Microdissection</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM) of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM)-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Transcript profiling using the Affymetrix GeneChip Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was developed to enable laser microdissection of M. truncatula root cortical cells. LM coupled with RT-PCR provided spatial gene expression information for both symbionts and expanded current information available for gene expression in cortical cells containing arbuscules.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19161626</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2009</Year>
<Month>Jan</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>10</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-9-10</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM) of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM)-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Transcript profiling using the Affymetrix GeneChip Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was developed to enable laser microdissection of M. truncatula root cortical cells. LM coupled with RT-PCR provided spatial gene expression information for both symbionts and expanded current information available for gene expression in cortical cells containing arbuscules.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gomez</LastName>
<ForeName>S Karen</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA. skg34@cornell.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Javot</LastName>
<ForeName>Hélène</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deewatthanawong</LastName>
<ForeName>Prasit</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Torres-Jerez</LastName>
<ForeName>Ivone</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Yuhong</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blancaflor</LastName>
<ForeName>Elison B</ForeName>
<Initials>EB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Udvardi</LastName>
<ForeName>Michael K</ForeName>
<Initials>MK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harrison</LastName>
<ForeName>Maria J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042282" MajorTopicYN="N">Microdissection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>10</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19161626</ArticleId>
<ArticleId IdType="pii">1471-2229-9-10</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-9-10</ArticleId>
<ArticleId IdType="pmc">PMC2649119</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Nov;19(11):1240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Mar;7(3):359-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7734968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1871-1883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1283-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2004 Mar 4;108(2):95-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15129719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Jan 22;19(2):204-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1063-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1786-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Nov 14;354(6349):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1944592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Apr 19;344(6268):781-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2330031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(3):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2001;217(4):154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11732307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):320-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Sep;13(9):1987-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11549759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 1999 Jan;5(1):117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9883850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2106-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Nov 1;5(6):587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):359-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 3;433(7025):527-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Aug;6(8):1339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(4):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):155-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8066-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1957 Jun 29;179(4574):1345</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13451615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Jul 25;19(14):4008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1861999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 17;308(5729):1789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 9;425(6958):637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Histochem. 1999;43(2):105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10439213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Nov;7(11):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):610-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jun 16;299(4):1113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10843862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Nov 8;274(5289):998-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8875945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2007 Dec;11(6):654-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Nov;226(6):1389-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17668236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 23;448(7156):938-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17671505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2836-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17056706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Aug;18(8):771-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16134889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Dec;17(12):1385-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15597744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Sep;71(9):5341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1996 Jul;43(1):71-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2008 Feb;112(Pt 2):170-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18280720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):583-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1055-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):952-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1996 Nov;16(1-2):6-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4701-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):244-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Dec;59(6):965-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Mar;218(5):683-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14760535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Feb 15;22(4):507-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jun 27;417(6892):959-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12087405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 24;302(5645):630-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 27;303(5662):1361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):529-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Apr;12(2):67-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12035729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Mar;20(3):293-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17378432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Jan;69(1):112-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17706732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 May;20(5):510-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Aug;14(4):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13680319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1619-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Mar 4;6(3):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):8-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Aug 9;86(3):423-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 1;11(23):3194-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9389651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Apr;16(4):306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002A74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19161626
   |texte=   Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19161626" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020