Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses.

Identifieur interne : 002A23 ( Main/Corpus ); précédent : 002A22; suivant : 002A24

The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses.

Auteurs : David S. Hibbett ; P Brandon Matheny

Source :

RBID : pubmed:19284559

English descriptors

Abstract

BACKGROUND

Ectomycorrhizae (ECM) are symbioses formed by polyphyletic assemblages of fungi (mostly Agaricomycetes) and plants (mostly Pinaceae and angiosperms in the rosid clade). Efforts to reconstruct the evolution of the ECM habit in Agaricomycetes have yielded vastly different results, ranging from scenarios with many relatively recent origins of the symbiosis and no reversals to the free-living condition; a single ancient origin of ECM and many subsequent transitions to the free-living condition; or multiple gains and losses of the association. To test the plausibility of these scenarios, we performed Bayesian relaxed molecular clock analyses including fungi, plants, and other eukaryotes, based on the principle that a symbiosis cannot evolve prior to the origin of both partners. As we were primarily interested in the relative ages of the plants and fungi, we did not attempt to calibrate the molecular clock using the very limited fossil record of Agaricomycetes.

RESULTS

Topologically constrained and unconstrained analyses suggest that the root node of the Agaricomycetes is much older than either the rosids or Pinaceae. The Agaricomycetidae, a large clade containing the Agaricales and Boletales (collectively representing 70% of Agaricomycetes), is also significantly older than the rosids. The relative age of Agaricomycetidae and Pinaceae, however, is sensitive to tree topology, and the inclusion or exclusion of the gnetophyte Welwitschia mirabilis.

CONCLUSION

The ancestor of the Agaricomycetes could not have been an ECM species because it existed long before any of its potential hosts. Within more derived clades of Agaricomycetes, there have been at least eight independent origins of ECM associations involving angiosperms, and at least six to eight origins of associations with gymnosperms. The first ECM symbioses may have involved Pinaceae, which are older than rosids, but several major clades of Agaricomycetes, such as the Boletales and Russulales, are young enough to have been plesiomorphically associated with either rosids or Pinaceae, suggesting that some contemporary ECM partnerships could be of very ancient origin.


DOI: 10.1186/1741-7007-7-13
PubMed: 19284559
PubMed Central: PMC2660285

Links to Exploration step

pubmed:19284559

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses.</title>
<author>
<name sortKey="Hibbett, David S" sort="Hibbett, David S" uniqKey="Hibbett D" first="David S" last="Hibbett">David S. Hibbett</name>
<affiliation>
<nlm:affiliation>Biology Department, Clark University, Worcester, Massachusetts 01610, USA. dhibbett@clarku.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matheny, P Brandon" sort="Matheny, P Brandon" uniqKey="Matheny P" first="P Brandon" last="Matheny">P Brandon Matheny</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19284559</idno>
<idno type="pmid">19284559</idno>
<idno type="doi">10.1186/1741-7007-7-13</idno>
<idno type="pmc">PMC2660285</idno>
<idno type="wicri:Area/Main/Corpus">002A23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses.</title>
<author>
<name sortKey="Hibbett, David S" sort="Hibbett, David S" uniqKey="Hibbett D" first="David S" last="Hibbett">David S. Hibbett</name>
<affiliation>
<nlm:affiliation>Biology Department, Clark University, Worcester, Massachusetts 01610, USA. dhibbett@clarku.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matheny, P Brandon" sort="Matheny, P Brandon" uniqKey="Matheny P" first="P Brandon" last="Matheny">P Brandon Matheny</name>
</author>
</analytic>
<series>
<title level="j">BMC biology</title>
<idno type="eISSN">1741-7007</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (classification)</term>
<term>Basidiomycota (genetics)</term>
<term>Bayes Theorem (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>DNA, Plant (MeSH)</term>
<term>Eukaryotic Cells (MeSH)</term>
<term>Fossils (MeSH)</term>
<term>Likelihood Functions (MeSH)</term>
<term>Mycorrhizae (classification)</term>
<term>Mycorrhizae (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants (classification)</term>
<term>Plants (genetics)</term>
<term>RNA Polymerase II (genetics)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA Polymerase II</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Plants</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bayes Theorem</term>
<term>Biological Evolution</term>
<term>Eukaryotic Cells</term>
<term>Fossils</term>
<term>Likelihood Functions</term>
<term>Phylogeny</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Ectomycorrhizae (ECM) are symbioses formed by polyphyletic assemblages of fungi (mostly Agaricomycetes) and plants (mostly Pinaceae and angiosperms in the rosid clade). Efforts to reconstruct the evolution of the ECM habit in Agaricomycetes have yielded vastly different results, ranging from scenarios with many relatively recent origins of the symbiosis and no reversals to the free-living condition; a single ancient origin of ECM and many subsequent transitions to the free-living condition; or multiple gains and losses of the association. To test the plausibility of these scenarios, we performed Bayesian relaxed molecular clock analyses including fungi, plants, and other eukaryotes, based on the principle that a symbiosis cannot evolve prior to the origin of both partners. As we were primarily interested in the relative ages of the plants and fungi, we did not attempt to calibrate the molecular clock using the very limited fossil record of Agaricomycetes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Topologically constrained and unconstrained analyses suggest that the root node of the Agaricomycetes is much older than either the rosids or Pinaceae. The Agaricomycetidae, a large clade containing the Agaricales and Boletales (collectively representing 70% of Agaricomycetes), is also significantly older than the rosids. The relative age of Agaricomycetidae and Pinaceae, however, is sensitive to tree topology, and the inclusion or exclusion of the gnetophyte Welwitschia mirabilis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The ancestor of the Agaricomycetes could not have been an ECM species because it existed long before any of its potential hosts. Within more derived clades of Agaricomycetes, there have been at least eight independent origins of ECM associations involving angiosperms, and at least six to eight origins of associations with gymnosperms. The first ECM symbioses may have involved Pinaceae, which are older than rosids, but several major clades of Agaricomycetes, such as the Boletales and Russulales, are young enough to have been plesiomorphically associated with either rosids or Pinaceae, suggesting that some contemporary ECM partnerships could be of very ancient origin.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19284559</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>04</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1741-7007</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC biology</Title>
<ISOAbbreviation>BMC Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses.</ArticleTitle>
<Pagination>
<MedlinePgn>13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1741-7007-7-13</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Ectomycorrhizae (ECM) are symbioses formed by polyphyletic assemblages of fungi (mostly Agaricomycetes) and plants (mostly Pinaceae and angiosperms in the rosid clade). Efforts to reconstruct the evolution of the ECM habit in Agaricomycetes have yielded vastly different results, ranging from scenarios with many relatively recent origins of the symbiosis and no reversals to the free-living condition; a single ancient origin of ECM and many subsequent transitions to the free-living condition; or multiple gains and losses of the association. To test the plausibility of these scenarios, we performed Bayesian relaxed molecular clock analyses including fungi, plants, and other eukaryotes, based on the principle that a symbiosis cannot evolve prior to the origin of both partners. As we were primarily interested in the relative ages of the plants and fungi, we did not attempt to calibrate the molecular clock using the very limited fossil record of Agaricomycetes.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Topologically constrained and unconstrained analyses suggest that the root node of the Agaricomycetes is much older than either the rosids or Pinaceae. The Agaricomycetidae, a large clade containing the Agaricales and Boletales (collectively representing 70% of Agaricomycetes), is also significantly older than the rosids. The relative age of Agaricomycetidae and Pinaceae, however, is sensitive to tree topology, and the inclusion or exclusion of the gnetophyte Welwitschia mirabilis.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The ancestor of the Agaricomycetes could not have been an ECM species because it existed long before any of its potential hosts. Within more derived clades of Agaricomycetes, there have been at least eight independent origins of ECM associations involving angiosperms, and at least six to eight origins of associations with gymnosperms. The first ECM symbioses may have involved Pinaceae, which are older than rosids, but several major clades of Agaricomycetes, such as the Boletales and Russulales, are young enough to have been plesiomorphically associated with either rosids or Pinaceae, suggesting that some contemporary ECM partnerships could be of very ancient origin.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hibbett</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Clark University, Worcester, Massachusetts 01610, USA. dhibbett@clarku.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matheny</LastName>
<ForeName>P Brandon</ForeName>
<Initials>PB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>03</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Biol</MedlineTA>
<NlmUniqueID>101190720</NlmUniqueID>
<ISSNLinking>1741-7007</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D012319">RNA Polymerase II</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="Y">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005057" MajorTopicYN="N">Eukaryotic Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005580" MajorTopicYN="N">Fossils</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016013" MajorTopicYN="N">Likelihood Functions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012319" MajorTopicYN="N">RNA Polymerase II</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19284559</ArticleId>
<ArticleId IdType="pii">1741-7007-7-13</ArticleId>
<ArticleId IdType="doi">10.1186/1741-7007-7-13</ArticleId>
<ArticleId IdType="pmc">PMC2660285</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2006 Nov 1;22(21):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Jun;90(6):954-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2002 Oct;89(10):1670-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2004 Jan 28;4:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15005799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Oct;91(10):1666-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Oct;91(10):1599-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1997 Jul;84(7):981</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 May;4(5):e88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 28;407(6803):506-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):982-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1997 Mar;84(3):410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):2104-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):917-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Oct;91(10):1656-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2004 Sep;108(Pt 9):1003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15506013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Oct;91(10):1614-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2004 Aug;94(2):281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15229124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2008 Apr;112(Pt 4):448-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11830664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2004 Jan-Feb;96(1):180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2001 Nov 7;268(1482):2211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11674868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2008 Oct;57(5):758-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18853362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2006 Nov-Dec;98(6):971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2007 May;43(2):430-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007;7:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 19;443(7113):818-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002A23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19284559
   |texte=   The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19284559" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020