Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited.

Identifieur interne : 002873 ( Main/Corpus ); précédent : 002872; suivant : 002874

Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited.

Auteurs : Daniela S. Floss ; Michael H. Walter

Source :

RBID : pubmed:19721743

English descriptors

Abstract

Oxidative tailoring of C(40) carotenoids by double bond-specific cleavage enzymes (carotenoid cleavage dioxygenases, CCDs) gives rise to various apocarotenoids. AtCCD1 generating C(13) and C(14) apocarotenoids and orthologous enzymes in other plants are the only CCDs acting in the cytosol, while the hitherto presumed C(40) substrate is localized in the plastid. A new model for CCD1 action arising from a RNAi-mediated CCD1 gene silencing study in mycorrhizal hairy roots of Medicago truncatula may solve this contradiction. This approach unexpectedly resulted in the accumulation of C(27) apocarotenoids but not C(40) carotenoids suggesting C(27) as the main substrates for CCD1 in planta. It further implies a consecutive two-step cleavage process, in which another CCD performs the primary cleavage of C(40) to C(27) in the plastid followed by C(27) export and further cleavage by CCD1 in the cytosol. We compare the specificities and subcellular locations of the various CCDs and propose the plastidial CCD7 to be the first player in mycorrhizal apocarotenoid biogenesis.

DOI: 10.4161/psb.4.3.7840
PubMed: 19721743
PubMed Central: PMC2652522

Links to Exploration step

pubmed:19721743

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited.</title>
<author>
<name sortKey="Floss, Daniela S" sort="Floss, Daniela S" uniqKey="Floss D" first="Daniela S" last="Floss">Daniela S. Floss</name>
<affiliation>
<nlm:affiliation>Leibniz-Institut für Pflanzenbiochemie (IPB), Abteilung Sekundärstoffwechsel, Halle (Saale), Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walter, Michael H" sort="Walter, Michael H" uniqKey="Walter M" first="Michael H" last="Walter">Michael H. Walter</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19721743</idno>
<idno type="pmid">19721743</idno>
<idno type="pmc">PMC2652522</idno>
<idno type="doi">10.4161/psb.4.3.7840</idno>
<idno type="wicri:Area/Main/Corpus">002873</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002873</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited.</title>
<author>
<name sortKey="Floss, Daniela S" sort="Floss, Daniela S" uniqKey="Floss D" first="Daniela S" last="Floss">Daniela S. Floss</name>
<affiliation>
<nlm:affiliation>Leibniz-Institut für Pflanzenbiochemie (IPB), Abteilung Sekundärstoffwechsel, Halle (Saale), Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walter, Michael H" sort="Walter, Michael H" uniqKey="Walter M" first="Michael H" last="Walter">Michael H. Walter</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carotenoids (biosynthesis)</term>
<term>Dioxygenases (metabolism)</term>
<term>Medicago truncatula (enzymology)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Plant Roots (enzymology)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Carotenoids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dioxygenases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Medicago truncatula</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mycorrhizae</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidative tailoring of C(40) carotenoids by double bond-specific cleavage enzymes (carotenoid cleavage dioxygenases, CCDs) gives rise to various apocarotenoids. AtCCD1 generating C(13) and C(14) apocarotenoids and orthologous enzymes in other plants are the only CCDs acting in the cytosol, while the hitherto presumed C(40) substrate is localized in the plastid. A new model for CCD1 action arising from a RNAi-mediated CCD1 gene silencing study in mycorrhizal hairy roots of Medicago truncatula may solve this contradiction. This approach unexpectedly resulted in the accumulation of C(27) apocarotenoids but not C(40) carotenoids suggesting C(27) as the main substrates for CCD1 in planta. It further implies a consecutive two-step cleavage process, in which another CCD performs the primary cleavage of C(40) to C(27) in the plastid followed by C(27) export and further cleavage by CCD1 in the cytosol. We compare the specificities and subcellular locations of the various CCDs and propose the plastidial CCD7 to be the first player in mycorrhizal apocarotenoid biogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19721743</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited.</ArticleTitle>
<Pagination>
<MedlinePgn>172-5</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Oxidative tailoring of C(40) carotenoids by double bond-specific cleavage enzymes (carotenoid cleavage dioxygenases, CCDs) gives rise to various apocarotenoids. AtCCD1 generating C(13) and C(14) apocarotenoids and orthologous enzymes in other plants are the only CCDs acting in the cytosol, while the hitherto presumed C(40) substrate is localized in the plastid. A new model for CCD1 action arising from a RNAi-mediated CCD1 gene silencing study in mycorrhizal hairy roots of Medicago truncatula may solve this contradiction. This approach unexpectedly resulted in the accumulation of C(27) apocarotenoids but not C(40) carotenoids suggesting C(27) as the main substrates for CCD1 in planta. It further implies a consecutive two-step cleavage process, in which another CCD performs the primary cleavage of C(40) to C(27) in the plastid followed by C(27) export and further cleavage by CCD1 in the cytosol. We compare the specificities and subcellular locations of the various CCDs and propose the plastidial CCD7 to be the first player in mycorrhizal apocarotenoid biogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Floss</LastName>
<ForeName>Daniela S</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Leibniz-Institut für Pflanzenbiochemie (IPB), Abteilung Sekundärstoffwechsel, Halle (Saale), Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walter</LastName>
<ForeName>Michael H</ForeName>
<Initials>MH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>36-88-4</RegistryNumber>
<NameOfSubstance UI="D002338">Carotenoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.11.-</RegistryNumber>
<NameOfSubstance UI="D049308">Dioxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.11.-</RegistryNumber>
<NameOfSubstance UI="C431939">carotenoid cleavage dioxygenase 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002338" MajorTopicYN="N">Carotenoids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049308" MajorTopicYN="N">Dioxygenases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046913" MajorTopicYN="N">Medicago truncatula</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>25</NumberOfReferences>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">C13 apocarotenoids</Keyword>
<Keyword MajorTopicYN="N">abscisic acid</Keyword>
<Keyword MajorTopicYN="N">arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">aroma compounds</Keyword>
<Keyword MajorTopicYN="N">carotenoid cleavage dioxygenase CCD1</Keyword>
<Keyword MajorTopicYN="N">norisoprenoids</Keyword>
<Keyword MajorTopicYN="N">strigolactones</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19721743</ArticleId>
<ArticleId IdType="pmc">PMC2652522</ArticleId>
<ArticleId IdType="doi">10.4161/psb.4.3.7840</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2000 Mar;21(6):571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1267-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18790999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Mar;43(3):256-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jul;35(1):44-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12834401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jun 20;276(5320):1872-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):46940-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15342640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3504-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Dec;40(6):882-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15584954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:165-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Oct;56(420):2721-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16131507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):920-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Mar;45(6):982-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Jun;9(3):315-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Oct;10(5):473-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17884716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 25;283(17):11364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18285342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):709-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Oct;56(1):86-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Dec 1;416(2):289-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18637791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 6;276(27):25208-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11316814</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002873 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002873 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19721743
   |texte=   Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19721743" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020