Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue.

Identifieur interne : 002844 ( Main/Corpus ); précédent : 002843; suivant : 002845

Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue.

Auteurs : X B Zhou ; A. Cébron ; T. Béguiristain ; C. Leyval

Source :

RBID : pubmed:19775720

English descriptors

Abstract

Polycyclic aromatic hydrocarbon (PAH) dissipation efficiency can be increased in the plant rhizosphere, but may be affected by various environmental factors. We investigated the effects of the watering regime and phosphorus concentration on PAH dissipation in the rhizosphere of mycorrhizal plants in a pot experiment. Two plant species, alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea), were co-cultured and inoculated with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) in PAH (phenanthrene (PHE)=500 mg kg(-1), pyrene (PYR)=500 mg kg(-1), dibenzo(a,h)anthracene (DBA)=65 mg kg(-1)) spiked agricultural soil for 6 weeks. Treatments with different phosphorus concentrations and watering regimes were compared. The PHE dissipation reached 90% in all treatments and was not affected by the treatments. The major finding was the significant positive impact of mycorrhizal plants on the dissipation of high molecular weight PAH (DBA) in high-water low-phosphorus treatment. Such an effect was not observed in high-water high-phosphorus and low-water low-phosphorus treatments, where AM colonization was very low. A positive linear relationship was detected between PYR dissipation and the percentage of Gram-positive PAH-ring hydroxylating dioxygenase genes in high-water high-phosphorus treatments, but not in the other two treatments with lower phosphorus concentrations and water contents. Such results indicated that the phosphorus and water regime were important parameters for the dissipation of HMW-PAH.

DOI: 10.1016/j.chemosphere.2009.08.050
PubMed: 19775720

Links to Exploration step

pubmed:19775720

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue.</title>
<author>
<name sortKey="Zhou, X B" sort="Zhou, X B" uniqKey="Zhou X" first="X B" last="Zhou">X B Zhou</name>
<affiliation>
<nlm:affiliation>LIMOS, Nancy University, CNRS, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cebron, A" sort="Cebron, A" uniqKey="Cebron A" first="A" last="Cébron">A. Cébron</name>
</author>
<author>
<name sortKey="Beguiristain, T" sort="Beguiristain, T" uniqKey="Beguiristain T" first="T" last="Béguiristain">T. Béguiristain</name>
</author>
<author>
<name sortKey="Leyval, C" sort="Leyval, C" uniqKey="Leyval C" first="C" last="Leyval">C. Leyval</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19775720</idno>
<idno type="pmid">19775720</idno>
<idno type="doi">10.1016/j.chemosphere.2009.08.050</idno>
<idno type="wicri:Area/Main/Corpus">002844</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002844</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue.</title>
<author>
<name sortKey="Zhou, X B" sort="Zhou, X B" uniqKey="Zhou X" first="X B" last="Zhou">X B Zhou</name>
<affiliation>
<nlm:affiliation>LIMOS, Nancy University, CNRS, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cebron, A" sort="Cebron, A" uniqKey="Cebron A" first="A" last="Cébron">A. Cébron</name>
</author>
<author>
<name sortKey="Beguiristain, T" sort="Beguiristain, T" uniqKey="Beguiristain T" first="T" last="Béguiristain">T. Béguiristain</name>
</author>
<author>
<name sortKey="Leyval, C" sort="Leyval, C" uniqKey="Leyval C" first="C" last="Leyval">C. Leyval</name>
</author>
</analytic>
<series>
<title level="j">Chemosphere</title>
<idno type="eISSN">1879-1298</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Festuca (metabolism)</term>
<term>Festuca (microbiology)</term>
<term>Fungi (growth & development)</term>
<term>Medicago sativa (metabolism)</term>
<term>Medicago sativa (microbiology)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phosphorus (chemistry)</term>
<term>Plant Shoots (metabolism)</term>
<term>Polycyclic Aromatic Hydrocarbons (chemistry)</term>
<term>Polycyclic Aromatic Hydrocarbons (metabolism)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (chemistry)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Symbiosis (MeSH)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phosphorus</term>
<term>Polycyclic Aromatic Hydrocarbons</term>
<term>Soil Pollutants</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Festuca</term>
<term>Medicago sativa</term>
<term>Mycorrhizae</term>
<term>Plant Shoots</term>
<term>Polycyclic Aromatic Hydrocarbons</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Festuca</term>
<term>Medicago sativa</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biomass</term>
<term>Soil Microbiology</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polycyclic aromatic hydrocarbon (PAH) dissipation efficiency can be increased in the plant rhizosphere, but may be affected by various environmental factors. We investigated the effects of the watering regime and phosphorus concentration on PAH dissipation in the rhizosphere of mycorrhizal plants in a pot experiment. Two plant species, alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea), were co-cultured and inoculated with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) in PAH (phenanthrene (PHE)=500 mg kg(-1), pyrene (PYR)=500 mg kg(-1), dibenzo(a,h)anthracene (DBA)=65 mg kg(-1)) spiked agricultural soil for 6 weeks. Treatments with different phosphorus concentrations and watering regimes were compared. The PHE dissipation reached 90% in all treatments and was not affected by the treatments. The major finding was the significant positive impact of mycorrhizal plants on the dissipation of high molecular weight PAH (DBA) in high-water low-phosphorus treatment. Such an effect was not observed in high-water high-phosphorus and low-water low-phosphorus treatments, where AM colonization was very low. A positive linear relationship was detected between PYR dissipation and the percentage of Gram-positive PAH-ring hydroxylating dioxygenase genes in high-water high-phosphorus treatments, but not in the other two treatments with lower phosphorus concentrations and water contents. Such results indicated that the phosphorus and water regime were important parameters for the dissipation of HMW-PAH.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19775720</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1298</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>77</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Chemosphere</Title>
<ISOAbbreviation>Chemosphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue.</ArticleTitle>
<Pagination>
<MedlinePgn>709-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chemosphere.2009.08.050</ELocationID>
<Abstract>
<AbstractText>Polycyclic aromatic hydrocarbon (PAH) dissipation efficiency can be increased in the plant rhizosphere, but may be affected by various environmental factors. We investigated the effects of the watering regime and phosphorus concentration on PAH dissipation in the rhizosphere of mycorrhizal plants in a pot experiment. Two plant species, alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea), were co-cultured and inoculated with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) in PAH (phenanthrene (PHE)=500 mg kg(-1), pyrene (PYR)=500 mg kg(-1), dibenzo(a,h)anthracene (DBA)=65 mg kg(-1)) spiked agricultural soil for 6 weeks. Treatments with different phosphorus concentrations and watering regimes were compared. The PHE dissipation reached 90% in all treatments and was not affected by the treatments. The major finding was the significant positive impact of mycorrhizal plants on the dissipation of high molecular weight PAH (DBA) in high-water low-phosphorus treatment. Such an effect was not observed in high-water high-phosphorus and low-water low-phosphorus treatments, where AM colonization was very low. A positive linear relationship was detected between PYR dissipation and the percentage of Gram-positive PAH-ring hydroxylating dioxygenase genes in high-water high-phosphorus treatments, but not in the other two treatments with lower phosphorus concentrations and water contents. Such results indicated that the phosphorus and water regime were important parameters for the dissipation of HMW-PAH.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>X B</ForeName>
<Initials>XB</Initials>
<AffiliationInfo>
<Affiliation>LIMOS, Nancy University, CNRS, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cébron</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Béguiristain</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leyval</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chemosphere</MedlineTA>
<NlmUniqueID>0320657</NlmUniqueID>
<ISSNLinking>0045-6535</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011084">Polycyclic Aromatic Hydrocarbons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031751" MajorTopicYN="N">Festuca</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000455" MajorTopicYN="N">Medicago sativa</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011084" MajorTopicYN="N">Polycyclic Aromatic Hydrocarbons</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19775720</ArticleId>
<ArticleId IdType="pii">S0045-6535(09)01036-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.chemosphere.2009.08.050</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002844 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002844 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19775720
   |texte=   Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19775720" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020