Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere.

Identifieur interne : 002652 ( Main/Corpus ); précédent : 002651; suivant : 002653

Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere.

Auteurs : Christophe Calvaruso ; Marie-Pierre Turpault ; Elisabeth Leclerc ; Jacques Ranger ; Jean Garbaye ; Stéphane Uroz ; Pascale Frey-Klett

Source :

RBID : pubmed:20511429

English descriptors

Abstract

In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.

DOI: 10.1128/AEM.03040-09
PubMed: 20511429
PubMed Central: PMC2901721

Links to Exploration step

pubmed:20511429

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere.</title>
<author>
<name sortKey="Calvaruso, Christophe" sort="Calvaruso, Christophe" uniqKey="Calvaruso C" first="Christophe" last="Calvaruso">Christophe Calvaruso</name>
<affiliation>
<nlm:affiliation>UMR 1136 INRA Nancy Université, Interactions Arbres-Microorganismes, 54280 Champenoux, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turpault, Marie Pierre" sort="Turpault, Marie Pierre" uniqKey="Turpault M" first="Marie-Pierre" last="Turpault">Marie-Pierre Turpault</name>
</author>
<author>
<name sortKey="Leclerc, Elisabeth" sort="Leclerc, Elisabeth" uniqKey="Leclerc E" first="Elisabeth" last="Leclerc">Elisabeth Leclerc</name>
</author>
<author>
<name sortKey="Ranger, Jacques" sort="Ranger, Jacques" uniqKey="Ranger J" first="Jacques" last="Ranger">Jacques Ranger</name>
</author>
<author>
<name sortKey="Garbaye, Jean" sort="Garbaye, Jean" uniqKey="Garbaye J" first="Jean" last="Garbaye">Jean Garbaye</name>
</author>
<author>
<name sortKey="Uroz, Stephane" sort="Uroz, Stephane" uniqKey="Uroz S" first="Stéphane" last="Uroz">Stéphane Uroz</name>
</author>
<author>
<name sortKey="Frey Klett, Pascale" sort="Frey Klett, Pascale" uniqKey="Frey Klett P" first="Pascale" last="Frey-Klett">Pascale Frey-Klett</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20511429</idno>
<idno type="pmid">20511429</idno>
<idno type="doi">10.1128/AEM.03040-09</idno>
<idno type="pmc">PMC2901721</idno>
<idno type="wicri:Area/Main/Corpus">002652</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002652</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere.</title>
<author>
<name sortKey="Calvaruso, Christophe" sort="Calvaruso, Christophe" uniqKey="Calvaruso C" first="Christophe" last="Calvaruso">Christophe Calvaruso</name>
<affiliation>
<nlm:affiliation>UMR 1136 INRA Nancy Université, Interactions Arbres-Microorganismes, 54280 Champenoux, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turpault, Marie Pierre" sort="Turpault, Marie Pierre" uniqKey="Turpault M" first="Marie-Pierre" last="Turpault">Marie-Pierre Turpault</name>
</author>
<author>
<name sortKey="Leclerc, Elisabeth" sort="Leclerc, Elisabeth" uniqKey="Leclerc E" first="Elisabeth" last="Leclerc">Elisabeth Leclerc</name>
</author>
<author>
<name sortKey="Ranger, Jacques" sort="Ranger, Jacques" uniqKey="Ranger J" first="Jacques" last="Ranger">Jacques Ranger</name>
</author>
<author>
<name sortKey="Garbaye, Jean" sort="Garbaye, Jean" uniqKey="Garbaye J" first="Jean" last="Garbaye">Jean Garbaye</name>
</author>
<author>
<name sortKey="Uroz, Stephane" sort="Uroz, Stephane" uniqKey="Uroz S" first="Stéphane" last="Uroz">Stéphane Uroz</name>
</author>
<author>
<name sortKey="Frey Klett, Pascale" sort="Frey Klett, Pascale" uniqKey="Frey Klett P" first="Pascale" last="Frey-Klett">Pascale Frey-Klett</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminum Silicates (metabolism)</term>
<term>Bacteria (classification)</term>
<term>Bacteria (growth & development)</term>
<term>Bacteria (isolation & purification)</term>
<term>Basidiomycota (growth & development)</term>
<term>Biodiversity (MeSH)</term>
<term>DNA, Bacterial (chemistry)</term>
<term>DNA, Bacterial (genetics)</term>
<term>DNA, Ribosomal (chemistry)</term>
<term>DNA, Ribosomal (genetics)</term>
<term>Fagus (microbiology)</term>
<term>Ferrous Compounds (metabolism)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Minerals (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Norway (MeSH)</term>
<term>Picea (microbiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Quercus (microbiology)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Soil (analysis)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Trees (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Bacterial</term>
<term>DNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>DNA, Ribosomal</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aluminum Silicates</term>
<term>Ferrous Compounds</term>
<term>Iron</term>
<term>Minerals</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Bacteria</term>
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fagus</term>
<term>Picea</term>
<term>Plant Roots</term>
<term>Quercus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Hydrogen-Ion Concentration</term>
<term>Molecular Sequence Data</term>
<term>Norway</term>
<term>Sequence Analysis, DNA</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20511429</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere.</ArticleTitle>
<Pagination>
<MedlinePgn>4780-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.03040-09</ELocationID>
<Abstract>
<AbstractText>In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Calvaruso</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>UMR 1136 INRA Nancy Université, Interactions Arbres-Microorganismes, 54280 Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turpault</LastName>
<ForeName>Marie-Pierre</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leclerc</LastName>
<ForeName>Elisabeth</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ranger</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garbaye</LastName>
<ForeName>Jean</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Uroz</LastName>
<ForeName>Stéphane</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frey-Klett</LastName>
<ForeName>Pascale</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>GU302310</AccessionNumber>
<AccessionNumber>GU302311</AccessionNumber>
<AccessionNumber>GU302312</AccessionNumber>
<AccessionNumber>GU302313</AccessionNumber>
<AccessionNumber>GU302314</AccessionNumber>
<AccessionNumber>GU302315</AccessionNumber>
<AccessionNumber>GU302316</AccessionNumber>
<AccessionNumber>GU302317</AccessionNumber>
<AccessionNumber>GU302318</AccessionNumber>
<AccessionNumber>GU302319</AccessionNumber>
<AccessionNumber>GU302320</AccessionNumber>
<AccessionNumber>GU302321</AccessionNumber>
<AccessionNumber>GU302322</AccessionNumber>
<AccessionNumber>GU302323</AccessionNumber>
<AccessionNumber>GU302324</AccessionNumber>
<AccessionNumber>GU302325</AccessionNumber>
<AccessionNumber>GU302326</AccessionNumber>
<AccessionNumber>GU302327</AccessionNumber>
<AccessionNumber>GU302328</AccessionNumber>
<AccessionNumber>GU302329</AccessionNumber>
<AccessionNumber>GU302330</AccessionNumber>
<AccessionNumber>GU302331</AccessionNumber>
<AccessionNumber>GU302332</AccessionNumber>
<AccessionNumber>GU302333</AccessionNumber>
<AccessionNumber>GU302334</AccessionNumber>
<AccessionNumber>GU302335</AccessionNumber>
<AccessionNumber>GU302336</AccessionNumber>
<AccessionNumber>GU302337</AccessionNumber>
<AccessionNumber>GU302338</AccessionNumber>
<AccessionNumber>GU302339</AccessionNumber>
<AccessionNumber>GU302340</AccessionNumber>
<AccessionNumber>GU302341</AccessionNumber>
<AccessionNumber>GU302342</AccessionNumber>
<AccessionNumber>GU302343</AccessionNumber>
<AccessionNumber>GU302344</AccessionNumber>
<AccessionNumber>GU302345</AccessionNumber>
<AccessionNumber>GU302346</AccessionNumber>
<AccessionNumber>GU302347</AccessionNumber>
<AccessionNumber>GU302348</AccessionNumber>
<AccessionNumber>GU302349</AccessionNumber>
<AccessionNumber>GU302350</AccessionNumber>
<AccessionNumber>GU302351</AccessionNumber>
<AccessionNumber>GU302352</AccessionNumber>
<AccessionNumber>GU302353</AccessionNumber>
<AccessionNumber>GU302354</AccessionNumber>
<AccessionNumber>GU302355</AccessionNumber>
<AccessionNumber>GU302356</AccessionNumber>
<AccessionNumber>GU302357</AccessionNumber>
<AccessionNumber>GU302358</AccessionNumber>
<AccessionNumber>GU302359</AccessionNumber>
<AccessionNumber>GU302360</AccessionNumber>
<AccessionNumber>GU302361</AccessionNumber>
<AccessionNumber>GU302362</AccessionNumber>
<AccessionNumber>GU302363</AccessionNumber>
<AccessionNumber>GU302364</AccessionNumber>
<AccessionNumber>GU302365</AccessionNumber>
<AccessionNumber>GU302366</AccessionNumber>
<AccessionNumber>GU302367</AccessionNumber>
<AccessionNumber>GU302368</AccessionNumber>
<AccessionNumber>GU302369</AccessionNumber>
<AccessionNumber>GU302370</AccessionNumber>
<AccessionNumber>GU302371</AccessionNumber>
<AccessionNumber>GU302372</AccessionNumber>
<AccessionNumber>GU302373</AccessionNumber>
<AccessionNumber>GU302374</AccessionNumber>
<AccessionNumber>GU302375</AccessionNumber>
<AccessionNumber>GU302376</AccessionNumber>
<AccessionNumber>GU302377</AccessionNumber>
<AccessionNumber>GU302378</AccessionNumber>
<AccessionNumber>GU302379</AccessionNumber>
<AccessionNumber>GU302380</AccessionNumber>
<AccessionNumber>GU302381</AccessionNumber>
<AccessionNumber>GU302382</AccessionNumber>
<AccessionNumber>GU302383</AccessionNumber>
<AccessionNumber>GU302384</AccessionNumber>
<AccessionNumber>GU302385</AccessionNumber>
<AccessionNumber>GU302386</AccessionNumber>
<AccessionNumber>GU302387</AccessionNumber>
<AccessionNumber>GU302388</AccessionNumber>
<AccessionNumber>GU302389</AccessionNumber>
<AccessionNumber>GU302390</AccessionNumber>
<AccessionNumber>GU302391</AccessionNumber>
<AccessionNumber>GU302392</AccessionNumber>
<AccessionNumber>GU302393</AccessionNumber>
<AccessionNumber>GU302394</AccessionNumber>
<AccessionNumber>GU302395</AccessionNumber>
<AccessionNumber>GU302396</AccessionNumber>
<AccessionNumber>GU302397</AccessionNumber>
<AccessionNumber>GU302398</AccessionNumber>
<AccessionNumber>GU302399</AccessionNumber>
<AccessionNumber>GU302400</AccessionNumber>
<AccessionNumber>GU302401</AccessionNumber>
<AccessionNumber>GU302402</AccessionNumber>
<AccessionNumber>GU302403</AccessionNumber>
<AccessionNumber>GU302404</AccessionNumber>
<AccessionNumber>GU302405</AccessionNumber>
<AccessionNumber>GU302406</AccessionNumber>
<AccessionNumber>GU302407</AccessionNumber>
<AccessionNumber>GU302408</AccessionNumber>
<AccessionNumber>GU302409</AccessionNumber>
<AccessionNumber>GU302410</AccessionNumber>
<AccessionNumber>GU302411</AccessionNumber>
<AccessionNumber>GU302412</AccessionNumber>
<AccessionNumber>GU302413</AccessionNumber>
<AccessionNumber>GU302414</AccessionNumber>
<AccessionNumber>GU302415</AccessionNumber>
<AccessionNumber>GU302416</AccessionNumber>
<AccessionNumber>GU302417</AccessionNumber>
<AccessionNumber>GU302418</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000538">Aluminum Silicates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005296">Ferrous Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008903">Minerals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1302-27-8</RegistryNumber>
<NameOfSubstance UI="C047410">biotite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000538" MajorTopicYN="N">Aluminum Silicates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="N">Fagus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005296" MajorTopicYN="N">Ferrous Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008903" MajorTopicYN="N">Minerals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009664" MajorTopicYN="N">Norway</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20511429</ArticleId>
<ArticleId IdType="pii">AEM.03040-09</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.03040-09</ArticleId>
<ArticleId IdType="pmc">PMC2901721</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2008;9:190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Mar-Apr;8(2):311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Sep;70(9):5057-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2005 Nov;50(4):614-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 2002 Sep;89(9):428-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Oct;58(10):3413-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2002 Mar 1;39(3):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Sep;6(5):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 Jul;32(4):607-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 Oct;54(3):567-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Oct 11;17(19):7843-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2798131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Jan;150(4):590-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 1999 Oct 1;30(2):187-199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2002 Jun;4(6):361-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12071981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 9;92(10):4197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2010 Apr;2(2):281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23766079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:243-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Dec;2(12):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 May;73(9):3019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Jul;64(7):2560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Sep;6(5):629-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Feb;72(2):1258-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Feb;12(2):281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Apr;75(8):2558-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jul;148(4):650-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16547734</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002652 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002652 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20511429
   |texte=   Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20511429" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020