Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2.

Identifieur interne : 002640 ( Main/Corpus ); précédent : 002639; suivant : 002641

Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2.

Auteurs : Barbara Drigo ; Agata S. Pijl ; Henk Duyts ; Anna M. Kielak ; Hannes A. Gamper ; Marco J. Houtekamer ; Henricus T S. Boschker ; Paul L E. Bodelier ; Andrew S. Whiteley ; Johannes A. Van Veen ; George A. Kowalchuk

Source :

RBID : pubmed:20534474

English descriptors

Abstract

Rising atmospheric CO(2) levels are predicted to have major consequences on carbon cycling and the functioning of terrestrial ecosystems. Increased photosynthetic activity is expected, especially for C-3 plants, thereby influencing vegetation dynamics; however, little is known about the path of fixed carbon into soil-borne communities and resulting feedbacks on ecosystem function. Here, we examine how arbuscular mycorrhizal fungi (AMF) act as a major conduit in the transfer of carbon between plants and soil and how elevated atmospheric CO(2) modulates the belowground translocation pathway of plant-fixed carbon. Shifts in active AMF species under elevated atmospheric CO(2) conditions are coupled to changes within active rhizosphere bacterial and fungal communities. Thus, as opposed to simply increasing the activity of soil-borne microbes through enhanced rhizodeposition, elevated atmospheric CO(2) clearly evokes the emergence of distinct opportunistic plant-associated microbial communities. Analyses involving RNA-based stable isotope probing, neutral/phosphate lipid fatty acids stable isotope probing, community fingerprinting, and real-time PCR allowed us to trace plant-fixed carbon to the affected soil-borne microorganisms. Based on our data, we present a conceptual model in which plant-assimilated carbon is rapidly transferred to AMF, followed by a slower release from AMF to the bacterial and fungal populations well-adapted to the prevailing (myco-)rhizosphere conditions. This model provides a general framework for reappraising carbon-flow paths in soils, facilitating predictions of future interactions between rising atmospheric CO(2) concentrations and terrestrial ecosystems.

DOI: 10.1073/pnas.0912421107
PubMed: 20534474
PubMed Central: PMC2890735

Links to Exploration step

pubmed:20534474

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2.</title>
<author>
<name sortKey="Drigo, Barbara" sort="Drigo, Barbara" uniqKey="Drigo B" first="Barbara" last="Drigo">Barbara Drigo</name>
<affiliation>
<nlm:affiliation>Department of Microbial Ecology, The Netherlands Institute of Ecology NIOO-KNAW, 6666 ZG Heteren, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pijl, Agata S" sort="Pijl, Agata S" uniqKey="Pijl A" first="Agata S" last="Pijl">Agata S. Pijl</name>
</author>
<author>
<name sortKey="Duyts, Henk" sort="Duyts, Henk" uniqKey="Duyts H" first="Henk" last="Duyts">Henk Duyts</name>
</author>
<author>
<name sortKey="Kielak, Anna M" sort="Kielak, Anna M" uniqKey="Kielak A" first="Anna M" last="Kielak">Anna M. Kielak</name>
</author>
<author>
<name sortKey="Gamper, Hannes A" sort="Gamper, Hannes A" uniqKey="Gamper H" first="Hannes A" last="Gamper">Hannes A. Gamper</name>
</author>
<author>
<name sortKey="Houtekamer, Marco J" sort="Houtekamer, Marco J" uniqKey="Houtekamer M" first="Marco J" last="Houtekamer">Marco J. Houtekamer</name>
</author>
<author>
<name sortKey="Boschker, Henricus T S" sort="Boschker, Henricus T S" uniqKey="Boschker H" first="Henricus T S" last="Boschker">Henricus T S. Boschker</name>
</author>
<author>
<name sortKey="Bodelier, Paul L E" sort="Bodelier, Paul L E" uniqKey="Bodelier P" first="Paul L E" last="Bodelier">Paul L E. Bodelier</name>
</author>
<author>
<name sortKey="Whiteley, Andrew S" sort="Whiteley, Andrew S" uniqKey="Whiteley A" first="Andrew S" last="Whiteley">Andrew S. Whiteley</name>
</author>
<author>
<name sortKey="Van Veen, Johannes A" sort="Van Veen, Johannes A" uniqKey="Van Veen J" first="Johannes A" last="Van Veen">Johannes A. Van Veen</name>
</author>
<author>
<name sortKey="Kowalchuk, George A" sort="Kowalchuk, George A" uniqKey="Kowalchuk G" first="George A" last="Kowalchuk">George A. Kowalchuk</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20534474</idno>
<idno type="pmid">20534474</idno>
<idno type="doi">10.1073/pnas.0912421107</idno>
<idno type="pmc">PMC2890735</idno>
<idno type="wicri:Area/Main/Corpus">002640</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002640</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2.</title>
<author>
<name sortKey="Drigo, Barbara" sort="Drigo, Barbara" uniqKey="Drigo B" first="Barbara" last="Drigo">Barbara Drigo</name>
<affiliation>
<nlm:affiliation>Department of Microbial Ecology, The Netherlands Institute of Ecology NIOO-KNAW, 6666 ZG Heteren, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pijl, Agata S" sort="Pijl, Agata S" uniqKey="Pijl A" first="Agata S" last="Pijl">Agata S. Pijl</name>
</author>
<author>
<name sortKey="Duyts, Henk" sort="Duyts, Henk" uniqKey="Duyts H" first="Henk" last="Duyts">Henk Duyts</name>
</author>
<author>
<name sortKey="Kielak, Anna M" sort="Kielak, Anna M" uniqKey="Kielak A" first="Anna M" last="Kielak">Anna M. Kielak</name>
</author>
<author>
<name sortKey="Gamper, Hannes A" sort="Gamper, Hannes A" uniqKey="Gamper H" first="Hannes A" last="Gamper">Hannes A. Gamper</name>
</author>
<author>
<name sortKey="Houtekamer, Marco J" sort="Houtekamer, Marco J" uniqKey="Houtekamer M" first="Marco J" last="Houtekamer">Marco J. Houtekamer</name>
</author>
<author>
<name sortKey="Boschker, Henricus T S" sort="Boschker, Henricus T S" uniqKey="Boschker H" first="Henricus T S" last="Boschker">Henricus T S. Boschker</name>
</author>
<author>
<name sortKey="Bodelier, Paul L E" sort="Bodelier, Paul L E" uniqKey="Bodelier P" first="Paul L E" last="Bodelier">Paul L E. Bodelier</name>
</author>
<author>
<name sortKey="Whiteley, Andrew S" sort="Whiteley, Andrew S" uniqKey="Whiteley A" first="Andrew S" last="Whiteley">Andrew S. Whiteley</name>
</author>
<author>
<name sortKey="Van Veen, Johannes A" sort="Van Veen, Johannes A" uniqKey="Van Veen J" first="Johannes A" last="Van Veen">Johannes A. Van Veen</name>
</author>
<author>
<name sortKey="Kowalchuk, George A" sort="Kowalchuk, George A" uniqKey="Kowalchuk G" first="George A" last="Kowalchuk">George A. Kowalchuk</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmosphere (chemistry)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (metabolism)</term>
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Isotopes (metabolism)</term>
<term>Carex Plant (metabolism)</term>
<term>Carex Plant (microbiology)</term>
<term>Climate Change (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Festuca (metabolism)</term>
<term>Festuca (microbiology)</term>
<term>Fungi (genetics)</term>
<term>Fungi (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>RNA, Bacterial (genetics)</term>
<term>RNA, Fungal (genetics)</term>
<term>Soil (analysis)</term>
<term>Soil Microbiology (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Bacterial</term>
<term>RNA, Fungal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Carbon Dioxide</term>
<term>Carbon Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Atmosphere</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
<term>Carex Plant</term>
<term>Festuca</term>
<term>Fungi</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Carex Plant</term>
<term>Festuca</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate Change</term>
<term>Ecosystem</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rising atmospheric CO(2) levels are predicted to have major consequences on carbon cycling and the functioning of terrestrial ecosystems. Increased photosynthetic activity is expected, especially for C-3 plants, thereby influencing vegetation dynamics; however, little is known about the path of fixed carbon into soil-borne communities and resulting feedbacks on ecosystem function. Here, we examine how arbuscular mycorrhizal fungi (AMF) act as a major conduit in the transfer of carbon between plants and soil and how elevated atmospheric CO(2) modulates the belowground translocation pathway of plant-fixed carbon. Shifts in active AMF species under elevated atmospheric CO(2) conditions are coupled to changes within active rhizosphere bacterial and fungal communities. Thus, as opposed to simply increasing the activity of soil-borne microbes through enhanced rhizodeposition, elevated atmospheric CO(2) clearly evokes the emergence of distinct opportunistic plant-associated microbial communities. Analyses involving RNA-based stable isotope probing, neutral/phosphate lipid fatty acids stable isotope probing, community fingerprinting, and real-time PCR allowed us to trace plant-fixed carbon to the affected soil-borne microorganisms. Based on our data, we present a conceptual model in which plant-assimilated carbon is rapidly transferred to AMF, followed by a slower release from AMF to the bacterial and fungal populations well-adapted to the prevailing (myco-)rhizosphere conditions. This model provides a general framework for reappraising carbon-flow paths in soils, facilitating predictions of future interactions between rising atmospheric CO(2) concentrations and terrestrial ecosystems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20534474</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2.</ArticleTitle>
<Pagination>
<MedlinePgn>10938-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0912421107</ELocationID>
<Abstract>
<AbstractText>Rising atmospheric CO(2) levels are predicted to have major consequences on carbon cycling and the functioning of terrestrial ecosystems. Increased photosynthetic activity is expected, especially for C-3 plants, thereby influencing vegetation dynamics; however, little is known about the path of fixed carbon into soil-borne communities and resulting feedbacks on ecosystem function. Here, we examine how arbuscular mycorrhizal fungi (AMF) act as a major conduit in the transfer of carbon between plants and soil and how elevated atmospheric CO(2) modulates the belowground translocation pathway of plant-fixed carbon. Shifts in active AMF species under elevated atmospheric CO(2) conditions are coupled to changes within active rhizosphere bacterial and fungal communities. Thus, as opposed to simply increasing the activity of soil-borne microbes through enhanced rhizodeposition, elevated atmospheric CO(2) clearly evokes the emergence of distinct opportunistic plant-associated microbial communities. Analyses involving RNA-based stable isotope probing, neutral/phosphate lipid fatty acids stable isotope probing, community fingerprinting, and real-time PCR allowed us to trace plant-fixed carbon to the affected soil-borne microorganisms. Based on our data, we present a conceptual model in which plant-assimilated carbon is rapidly transferred to AMF, followed by a slower release from AMF to the bacterial and fungal populations well-adapted to the prevailing (myco-)rhizosphere conditions. This model provides a general framework for reappraising carbon-flow paths in soils, facilitating predictions of future interactions between rising atmospheric CO(2) concentrations and terrestrial ecosystems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Drigo</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbial Ecology, The Netherlands Institute of Ecology NIOO-KNAW, 6666 ZG Heteren, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pijl</LastName>
<ForeName>Agata S</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Duyts</LastName>
<ForeName>Henk</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kielak</LastName>
<ForeName>Anna M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gamper</LastName>
<ForeName>Hannes A</ForeName>
<Initials>HA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Houtekamer</LastName>
<ForeName>Marco J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boschker</LastName>
<ForeName>Henricus T S</ForeName>
<Initials>HT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bodelier</LastName>
<ForeName>Paul L E</ForeName>
<Initials>PL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whiteley</LastName>
<ForeName>Andrew S</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van Veen</LastName>
<ForeName>Johannes A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kowalchuk</LastName>
<ForeName>George A</ForeName>
<Initials>GA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>GU123663</AccessionNumber>
<AccessionNumber>GU123664</AccessionNumber>
<AccessionNumber>GU123665</AccessionNumber>
<AccessionNumber>GU123666</AccessionNumber>
<AccessionNumber>GU123667</AccessionNumber>
<AccessionNumber>GU123668</AccessionNumber>
<AccessionNumber>GU123669</AccessionNumber>
<AccessionNumber>GU123670</AccessionNumber>
<AccessionNumber>GU123671</AccessionNumber>
<AccessionNumber>GU123672</AccessionNumber>
<AccessionNumber>GU123673</AccessionNumber>
<AccessionNumber>GU123674</AccessionNumber>
<AccessionNumber>GU123675</AccessionNumber>
<AccessionNumber>GU123676</AccessionNumber>
<AccessionNumber>GU123677</AccessionNumber>
<AccessionNumber>GU123678</AccessionNumber>
<AccessionNumber>GU123679</AccessionNumber>
<AccessionNumber>GU123680</AccessionNumber>
<AccessionNumber>GU123681</AccessionNumber>
<AccessionNumber>GU123682</AccessionNumber>
<AccessionNumber>GU123683</AccessionNumber>
<AccessionNumber>GU123684</AccessionNumber>
<AccessionNumber>GU123685</AccessionNumber>
<AccessionNumber>GU123686</AccessionNumber>
<AccessionNumber>GU123687</AccessionNumber>
<AccessionNumber>GU123688</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001272" MajorTopicYN="N">Atmosphere</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031255" MajorTopicYN="N">Carex Plant</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="N">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031751" MajorTopicYN="N">Festuca</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20534474</ArticleId>
<ArticleId IdType="pii">0912421107</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0912421107</ArticleId>
<ArticleId IdType="pmc">PMC2890735</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Apr;68(4):1595-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Jan 1;47(1):51-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Apr;14(2):111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12768382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):22-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1991 Jun;55(2):288-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1886522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Oct;67(10):4742-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11571180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):351-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2003 Dec;55(3):635-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 10;433(7026):621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):635-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 18;257(5077):1672-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17841166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):664-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):838-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 25;319(5862):456-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Dec 1;314(5804):1417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17138894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Nov;59(11):3605-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 22;316(5832):1746-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002640 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002640 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20534474
   |texte=   Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20534474" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020