Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.

Identifieur interne : 002560 ( Main/Corpus ); précédent : 002559; suivant : 002561

Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.

Auteurs : Qian Zhang ; Ruyi Yang ; Jianjun Tang ; Haishui Yang ; Shuijin Hu ; Xin Chen

Source :

RBID : pubmed:20808770

English descriptors

Abstract

Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.

DOI: 10.1371/journal.pone.0012380
PubMed: 20808770
PubMed Central: PMC2927435

Links to Exploration step

pubmed:20808770

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.</title>
<author>
<name sortKey="Zhang, Qian" sort="Zhang, Qian" uniqKey="Zhang Q" first="Qian" last="Zhang">Qian Zhang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ruyi" sort="Yang, Ruyi" uniqKey="Yang R" first="Ruyi" last="Yang">Ruyi Yang</name>
</author>
<author>
<name sortKey="Tang, Jianjun" sort="Tang, Jianjun" uniqKey="Tang J" first="Jianjun" last="Tang">Jianjun Tang</name>
</author>
<author>
<name sortKey="Yang, Haishui" sort="Yang, Haishui" uniqKey="Yang H" first="Haishui" last="Yang">Haishui Yang</name>
</author>
<author>
<name sortKey="Hu, Shuijin" sort="Hu, Shuijin" uniqKey="Hu S" first="Shuijin" last="Hu">Shuijin Hu</name>
</author>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20808770</idno>
<idno type="pmid">20808770</idno>
<idno type="doi">10.1371/journal.pone.0012380</idno>
<idno type="pmc">PMC2927435</idno>
<idno type="wicri:Area/Main/Corpus">002560</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002560</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.</title>
<author>
<name sortKey="Zhang, Qian" sort="Zhang, Qian" uniqKey="Zhang Q" first="Qian" last="Zhang">Qian Zhang</name>
<affiliation>
<nlm:affiliation>College of Life Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ruyi" sort="Yang, Ruyi" uniqKey="Yang R" first="Ruyi" last="Yang">Ruyi Yang</name>
</author>
<author>
<name sortKey="Tang, Jianjun" sort="Tang, Jianjun" uniqKey="Tang J" first="Jianjun" last="Tang">Jianjun Tang</name>
</author>
<author>
<name sortKey="Yang, Haishui" sort="Yang, Haishui" uniqKey="Yang H" first="Haishui" last="Yang">Haishui Yang</name>
</author>
<author>
<name sortKey="Hu, Shuijin" sort="Hu, Shuijin" uniqKey="Hu S" first="Shuijin" last="Hu">Shuijin Hu</name>
</author>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Plant (metabolism)</term>
<term>Feedback, Physiological (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Spores, Fungal (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Feedback, Physiological</term>
<term>Plant Physiological Phenomena</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20808770</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2010</Year>
<Month>Aug</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.</ArticleTitle>
<Pagination>
<MedlinePgn>e12380</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0012380</ELocationID>
<Abstract>
<AbstractText>Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Qian</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Ruyi</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Jianjun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Haishui</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Shuijin</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025461" MajorTopicYN="Y">Feedback, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="Y">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20808770</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0012380</ArticleId>
<ArticleId IdType="pmc">PMC2927435</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Jan;58(1):291-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1339260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Feb 19;427(6976):731-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Feb;122(3):435-444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Mar;11(3):571-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11928709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 May 2;417(6884):67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Oct 20;290(5491):521-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11039934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Dec 15;241(2):265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2003 Nov;12(11):3085-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14629388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 May;4(5):e140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Feb;90(2):399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19323224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(3):445-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2002 Dec 22;269(1509):2595-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12573075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jul;17(13):3198-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Apr;88(4):978-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17536713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 11;409(6817):188-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11196641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Apr;90(4):1055-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19449699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Jan;12(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2000 Feb;75(1):65-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10740893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Apr;89(4):1043-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Jul;87(7):1627-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16922314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Mar;59(3):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7683183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Sep;73(17):5426-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17630317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):1188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19496954</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002560 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002560 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20808770
   |texte=   Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20808770" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020