Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism.

Identifieur interne : 002546 ( Main/Corpus ); précédent : 002545; suivant : 002547

Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism.

Auteurs : Todd M. Palmer ; Daniel F. Doak ; Maureen L. Stanton ; Judith L. Bronstein ; E Toby Kiers ; Truman P. Young ; Jacob R. Goheen ; Robert M. Pringle

Source :

RBID : pubmed:20855614

English descriptors

Abstract

Understanding cooperation is a central challenge in biology, because natural selection should favor "free-loaders" that reap benefits without reciprocating. For interspecific cooperation (mutualism), most approaches to this paradox focus on costs and benefits of individual partners and the strategies mutualists use to associate with beneficial partners. However, natural selection acts on lifetime fitness, and most mutualists, particularly longer-lived species interacting with shorter-lived partners (e.g., corals and zooxanthellae, tropical trees and mycorrhizae) interact with multiple partner species throughout ontogeny. Determining how multiple partnerships might interactively affect lifetime fitness is a crucial unexplored link in understanding the evolution and maintenance of cooperation. The tropical tree Acacia drepanolobium associates with four symbiotic ant species whose short-term individual effects range from mutualistic to parasitic. Using a long-term dataset, we show that tree fitness is enhanced by partnering sequentially with sets of different ant symbionts over the ontogeny of a tree. These sets include a "sterilization parasite" that prevents reproduction and another that reduces tree survivorship. Trees associating with partner sets that include these "parasites" enhance lifetime fitness by trading off survivorship and fecundity at different life stages. Our results demonstrate the importance of evaluating mutualism within a community context and suggest that lifespan inequalities among mutualists may help cooperation persist in the face of exploitation.

DOI: 10.1073/pnas.1006872107
PubMed: 20855614
PubMed Central: PMC2951420

Links to Exploration step

pubmed:20855614

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism.</title>
<author>
<name sortKey="Palmer, Todd M" sort="Palmer, Todd M" uniqKey="Palmer T" first="Todd M" last="Palmer">Todd M. Palmer</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Florida, Gainesville, FL 32611, USA. tmp@ufl.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Doak, Daniel F" sort="Doak, Daniel F" uniqKey="Doak D" first="Daniel F" last="Doak">Daniel F. Doak</name>
</author>
<author>
<name sortKey="Stanton, Maureen L" sort="Stanton, Maureen L" uniqKey="Stanton M" first="Maureen L" last="Stanton">Maureen L. Stanton</name>
</author>
<author>
<name sortKey="Bronstein, Judith L" sort="Bronstein, Judith L" uniqKey="Bronstein J" first="Judith L" last="Bronstein">Judith L. Bronstein</name>
</author>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
</author>
<author>
<name sortKey="Young, Truman P" sort="Young, Truman P" uniqKey="Young T" first="Truman P" last="Young">Truman P. Young</name>
</author>
<author>
<name sortKey="Goheen, Jacob R" sort="Goheen, Jacob R" uniqKey="Goheen J" first="Jacob R" last="Goheen">Jacob R. Goheen</name>
</author>
<author>
<name sortKey="Pringle, Robert M" sort="Pringle, Robert M" uniqKey="Pringle R" first="Robert M" last="Pringle">Robert M. Pringle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20855614</idno>
<idno type="pmid">20855614</idno>
<idno type="doi">10.1073/pnas.1006872107</idno>
<idno type="pmc">PMC2951420</idno>
<idno type="wicri:Area/Main/Corpus">002546</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002546</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism.</title>
<author>
<name sortKey="Palmer, Todd M" sort="Palmer, Todd M" uniqKey="Palmer T" first="Todd M" last="Palmer">Todd M. Palmer</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Florida, Gainesville, FL 32611, USA. tmp@ufl.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Doak, Daniel F" sort="Doak, Daniel F" uniqKey="Doak D" first="Daniel F" last="Doak">Daniel F. Doak</name>
</author>
<author>
<name sortKey="Stanton, Maureen L" sort="Stanton, Maureen L" uniqKey="Stanton M" first="Maureen L" last="Stanton">Maureen L. Stanton</name>
</author>
<author>
<name sortKey="Bronstein, Judith L" sort="Bronstein, Judith L" uniqKey="Bronstein J" first="Judith L" last="Bronstein">Judith L. Bronstein</name>
</author>
<author>
<name sortKey="Kiers, E Toby" sort="Kiers, E Toby" uniqKey="Kiers E" first="E Toby" last="Kiers">E Toby Kiers</name>
</author>
<author>
<name sortKey="Young, Truman P" sort="Young, Truman P" uniqKey="Young T" first="Truman P" last="Young">Truman P. Young</name>
</author>
<author>
<name sortKey="Goheen, Jacob R" sort="Goheen, Jacob R" uniqKey="Goheen J" first="Jacob R" last="Goheen">Jacob R. Goheen</name>
</author>
<author>
<name sortKey="Pringle, Robert M" sort="Pringle, Robert M" uniqKey="Pringle R" first="Robert M" last="Pringle">Robert M. Pringle</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acacia (physiology)</term>
<term>Animals (MeSH)</term>
<term>Ants (physiology)</term>
<term>Biological Evolution (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Genetic Fitness (MeSH)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Survival Rate (MeSH)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acacia</term>
<term>Ants</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Ecosystem</term>
<term>Genetic Fitness</term>
<term>Host-Parasite Interactions</term>
<term>Survival Rate</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding cooperation is a central challenge in biology, because natural selection should favor "free-loaders" that reap benefits without reciprocating. For interspecific cooperation (mutualism), most approaches to this paradox focus on costs and benefits of individual partners and the strategies mutualists use to associate with beneficial partners. However, natural selection acts on lifetime fitness, and most mutualists, particularly longer-lived species interacting with shorter-lived partners (e.g., corals and zooxanthellae, tropical trees and mycorrhizae) interact with multiple partner species throughout ontogeny. Determining how multiple partnerships might interactively affect lifetime fitness is a crucial unexplored link in understanding the evolution and maintenance of cooperation. The tropical tree Acacia drepanolobium associates with four symbiotic ant species whose short-term individual effects range from mutualistic to parasitic. Using a long-term dataset, we show that tree fitness is enhanced by partnering sequentially with sets of different ant symbionts over the ontogeny of a tree. These sets include a "sterilization parasite" that prevents reproduction and another that reduces tree survivorship. Trees associating with partner sets that include these "parasites" enhance lifetime fitness by trading off survivorship and fecundity at different life stages. Our results demonstrate the importance of evaluating mutualism within a community context and suggest that lifespan inequalities among mutualists may help cooperation persist in the face of exploitation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20855614</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>11</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2010</Year>
<Month>Oct</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism.</ArticleTitle>
<Pagination>
<MedlinePgn>17234-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1006872107</ELocationID>
<Abstract>
<AbstractText>Understanding cooperation is a central challenge in biology, because natural selection should favor "free-loaders" that reap benefits without reciprocating. For interspecific cooperation (mutualism), most approaches to this paradox focus on costs and benefits of individual partners and the strategies mutualists use to associate with beneficial partners. However, natural selection acts on lifetime fitness, and most mutualists, particularly longer-lived species interacting with shorter-lived partners (e.g., corals and zooxanthellae, tropical trees and mycorrhizae) interact with multiple partner species throughout ontogeny. Determining how multiple partnerships might interactively affect lifetime fitness is a crucial unexplored link in understanding the evolution and maintenance of cooperation. The tropical tree Acacia drepanolobium associates with four symbiotic ant species whose short-term individual effects range from mutualistic to parasitic. Using a long-term dataset, we show that tree fitness is enhanced by partnering sequentially with sets of different ant symbionts over the ontogeny of a tree. These sets include a "sterilization parasite" that prevents reproduction and another that reduces tree survivorship. Trees associating with partner sets that include these "parasites" enhance lifetime fitness by trading off survivorship and fecundity at different life stages. Our results demonstrate the importance of evaluating mutualism within a community context and suggest that lifespan inequalities among mutualists may help cooperation persist in the face of exploitation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Palmer</LastName>
<ForeName>Todd M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Florida, Gainesville, FL 32611, USA. tmp@ufl.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doak</LastName>
<ForeName>Daniel F</ForeName>
<Initials>DF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stanton</LastName>
<ForeName>Maureen L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bronstein</LastName>
<ForeName>Judith L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kiers</LastName>
<ForeName>E Toby</ForeName>
<Initials>ET</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Truman P</ForeName>
<Initials>TP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goheen</LastName>
<ForeName>Jacob R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pringle</LastName>
<ForeName>Robert M</ForeName>
<Initials>RM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000045" MajorTopicYN="N">Acacia</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001000" MajorTopicYN="N">Ants</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056084" MajorTopicYN="Y">Genetic Fitness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015996" MajorTopicYN="N">Survival Rate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20855614</ArticleId>
<ArticleId IdType="pii">1006872107</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1006872107</ArticleId>
<ArticleId IdType="pmc">PMC2951420</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Ecol Evol. 1999 Dec;14(12):467-471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Dec;11(12):2669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 4;425(6953):78-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12955144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 1954 Jun;29(2):103-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13177850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2003 Oct;162(4 Suppl):S10-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14583854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2003 Oct;162(4 Suppl):S63-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14583858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Apr;143(3):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15711821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2005 Jul;166(1):E14-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Aug;20(8):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2006 Jul;19(4):1283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16780529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 21;313(5785):351-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16857940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(3):412-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Apr;88(4):1021-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17536717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Aug 21;17(16):R661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1975 May 30;188(4191):936-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17749814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 11;319(5860):192-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18187652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Dec;88(12):3004-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18229835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Mar 11;6(3):e59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18336072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18591663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Dec;11(12):1351-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19062363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 2009 Oct;96(10):1137-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19484212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009 Jun 01;9:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19486536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Jun;90(6):1595-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19569374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 24;325(5939):416-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Ecol Sociobiol. 2008 Apr;62(6):953-962</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19816532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2010 Mar;79(2):372-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20039982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Sep;104(1):79-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Dec;109(1):98-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 May;123(3):425-435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Aug;91(1):101-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Nov;133(3):372-379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28466213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Oct;133(2):200-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Mar 27;211(4489):1390-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7466396</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002546 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002546 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20855614
   |texte=   Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:20855614" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020