Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress.

Identifieur interne : 002462 ( Main/Corpus ); précédent : 002461; suivant : 002463

Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress.

Auteurs : Min Sheng ; Ming Tang ; Fengfeng Zhang ; Yanhui Huang

Source :

RBID : pubmed:21191619

English descriptors

Abstract

A pot experiment was conducted to examine the effect of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on plant biomass and organic solute accumulation in maize leaves. Maize plants were grown in sand and soil mixture with three NaCl levels (0, 0.5, and 1.0 g kg(-1) dry substrate) for 55 days, after 15 days of establishment under non-saline conditions. At all salinity levels, mycorrhizal plants had higher biomass and higher accumulation of organic solutes in leaves, which were dominated by soluble sugars, reducing sugars, soluble protein, and organic acids in both mycorrhizal and non-mycorrhizal plants. The relative abundance of free amino acids and proline in total organic solutes was lower in mycorrhizal than in non-mycorrhizal plants, while that of reducing sugars was higher. In addition, the AM symbiosis raised the concentrations of soluble sugars, reducing sugars, soluble protein, total organic acids, oxalic acid, fumaric acid, acetic acid, malic acid, and citric acid and decreased the concentrations of total free amino acids, proline, formic acid, and succinic acid in maize leaves. In mycorrhizal plants, the dominant organic acid was oxalic acid, while in non-mycorrhizal plants, the dominant organic acid was succinic acid. All the results presented here indicate that the accumulation of organic solutes in leaves is a specific physiological response of maize plants to the AM symbiosis, which could mitigate the negative impact of soil salinity on plant productivity.

DOI: 10.1007/s00572-010-0353-z
PubMed: 21191619

Links to Exploration step

pubmed:21191619

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress.</title>
<author>
<name sortKey="Sheng, Min" sort="Sheng, Min" uniqKey="Sheng M" first="Min" last="Sheng">Min Sheng</name>
<affiliation>
<nlm:affiliation>College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
<affiliation>
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China. tangm@nwsuaf.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Fengfeng" sort="Zhang, Fengfeng" uniqKey="Zhang F" first="Fengfeng" last="Zhang">Fengfeng Zhang</name>
<affiliation>
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yanhui" sort="Huang, Yanhui" uniqKey="Huang Y" first="Yanhui" last="Huang">Yanhui Huang</name>
<affiliation>
<nlm:affiliation>College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21191619</idno>
<idno type="pmid">21191619</idno>
<idno type="doi">10.1007/s00572-010-0353-z</idno>
<idno type="wicri:Area/Main/Corpus">002462</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002462</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress.</title>
<author>
<name sortKey="Sheng, Min" sort="Sheng, Min" uniqKey="Sheng M" first="Min" last="Sheng">Min Sheng</name>
<affiliation>
<nlm:affiliation>College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ming" sort="Tang, Ming" uniqKey="Tang M" first="Ming" last="Tang">Ming Tang</name>
<affiliation>
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China. tangm@nwsuaf.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Fengfeng" sort="Zhang, Fengfeng" uniqKey="Zhang F" first="Fengfeng" last="Zhang">Fengfeng Zhang</name>
<affiliation>
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yanhui" sort="Huang, Yanhui" uniqKey="Huang Y" first="Yanhui" last="Huang">Yanhui Huang</name>
<affiliation>
<nlm:affiliation>College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glomeromycota (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (microbiology)</term>
<term>Sodium Chloride (metabolism)</term>
<term>Symbiosis (MeSH)</term>
<term>Zea mays (metabolism)</term>
<term>Zea mays (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A pot experiment was conducted to examine the effect of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on plant biomass and organic solute accumulation in maize leaves. Maize plants were grown in sand and soil mixture with three NaCl levels (0, 0.5, and 1.0 g kg(-1) dry substrate) for 55 days, after 15 days of establishment under non-saline conditions. At all salinity levels, mycorrhizal plants had higher biomass and higher accumulation of organic solutes in leaves, which were dominated by soluble sugars, reducing sugars, soluble protein, and organic acids in both mycorrhizal and non-mycorrhizal plants. The relative abundance of free amino acids and proline in total organic solutes was lower in mycorrhizal than in non-mycorrhizal plants, while that of reducing sugars was higher. In addition, the AM symbiosis raised the concentrations of soluble sugars, reducing sugars, soluble protein, total organic acids, oxalic acid, fumaric acid, acetic acid, malic acid, and citric acid and decreased the concentrations of total free amino acids, proline, formic acid, and succinic acid in maize leaves. In mycorrhizal plants, the dominant organic acid was oxalic acid, while in non-mycorrhizal plants, the dominant organic acid was succinic acid. All the results presented here indicate that the accumulation of organic solutes in leaves is a specific physiological response of maize plants to the AM symbiosis, which could mitigate the negative impact of soil salinity on plant productivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21191619</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress.</ArticleTitle>
<Pagination>
<MedlinePgn>423-430</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-010-0353-z</ELocationID>
<Abstract>
<AbstractText>A pot experiment was conducted to examine the effect of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on plant biomass and organic solute accumulation in maize leaves. Maize plants were grown in sand and soil mixture with three NaCl levels (0, 0.5, and 1.0 g kg(-1) dry substrate) for 55 days, after 15 days of establishment under non-saline conditions. At all salinity levels, mycorrhizal plants had higher biomass and higher accumulation of organic solutes in leaves, which were dominated by soluble sugars, reducing sugars, soluble protein, and organic acids in both mycorrhizal and non-mycorrhizal plants. The relative abundance of free amino acids and proline in total organic solutes was lower in mycorrhizal than in non-mycorrhizal plants, while that of reducing sugars was higher. In addition, the AM symbiosis raised the concentrations of soluble sugars, reducing sugars, soluble protein, total organic acids, oxalic acid, fumaric acid, acetic acid, malic acid, and citric acid and decreased the concentrations of total free amino acids, proline, formic acid, and succinic acid in maize leaves. In mycorrhizal plants, the dominant organic acid was oxalic acid, while in non-mycorrhizal plants, the dominant organic acid was succinic acid. All the results presented here indicate that the accumulation of organic solutes in leaves is a specific physiological response of maize plants to the AM symbiosis, which could mitigate the negative impact of soil salinity on plant productivity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sheng</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China. tangm@nwsuaf.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Fengfeng</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Yanhui</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>12</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21191619</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-010-0353-z</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-010-0353-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microb Ecol. 2008 Jan;55(1):45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17393053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Sep;164(9):1144-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 May;15(3):225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15765207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Oct;14(5):307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14574620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2000 Dec 7;160(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11164572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Aug;96(4):1228-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Sep;18(6-7):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18584217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 Nov;54(4):753-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17372663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:273-298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 20;285(5431):1256-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2009 Jul;55(7):879-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2001;156(4):359-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11770854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jul;105(3):981-987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 May;164(5):553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16650912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ying Yong Sheng Tai Xue Bao. 2000 Aug;11(4):595-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11767685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21191619
   |texte=   Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21191619" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020