Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils.

Identifieur interne : 002398 ( Main/Corpus ); précédent : 002397; suivant : 002399

Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils.

Auteurs : Fa Yuan Wang ; Rui Jian Tong ; Zhao Yong Shi ; Xiao Feng Xu ; Xin Hua He

Source :

RBID : pubmed:21347374

English descriptors

Abstract

BACKGROUND

As one of the most widely used organophosphate insecticides in vegetable production, phoxim (C(12)H(15)N(2)O(3)PS) is often found as residues in crops and soils and thus poses a potential threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to the decrease of organophosphate residues in crops and/or the degradation in soils, but such effects remain unknown.

METHODOLOGY/PRINCIPAL FINDINGS

A greenhouse pot experiment studied the influence of AM fungi and phoxim application on the growth of carrot and green onion, and phoxim concentrations in the two vegetables and their soil media. Treatments included three AM fungal inoculations with Glomus intraradices BEG 141, G. mosseae BEG 167, and a nonmycorrhizal control, and four phoxim application rates (0, 200, 400, 800 mg l(-1), while 400 mg l(-1) rate is the recommended dose in the vegetable production system). Carrot and green onion were grown in a greenhouse for 130 d and 150 d. Phoxim solution (100 ml) was poured into each pot around the roots 14d before plant harvest. Results showed that mycorrhizal colonization was higher than 70%, and phoxim application inhibited AM colonization on carrot but not on green onion. Compared with the nonmycorrhizal controls, both shoot and root fresh weights of these two vegetables were significantly increased by AM inoculations irrespective of phoxim application rates. Phoxim concentrations in shoots, roots and soils were increased with the increase of phoxim application rate, but significantly decreased by the AM inoculations. Soil phosphatase activity was enhanced by both AM inocula, but not affected by phoxim application rate. In general, G. intraradices BEG 141 had more pronounced effects than G. mosseae BEG 167 on the increase of fresh weight production in both carrot and green onion, and the decrease of phoxim concentrations in plants and soils.

CONCLUSIONS/SIGNIFICANCE

Our results indicate a promising potential of AM fungi for enhancing vegetable production and reducing organophosphorus pesticide residues in plant tissues and their growth media, as well as for the phytoremediation of organophosphorus pesticide-contaminated soils.


DOI: 10.1371/journal.pone.0016949
PubMed: 21347374
PubMed Central: PMC3036715

Links to Exploration step

pubmed:21347374

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils.</title>
<author>
<name sortKey="Wang, Fa Yuan" sort="Wang, Fa Yuan" uniqKey="Wang F" first="Fa Yuan" last="Wang">Fa Yuan Wang</name>
<affiliation>
<nlm:affiliation>Agricultural College, Henan University of Science and Technology, Luoyang, China. wfy1975@163.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tong, Rui Jian" sort="Tong, Rui Jian" uniqKey="Tong R" first="Rui Jian" last="Tong">Rui Jian Tong</name>
</author>
<author>
<name sortKey="Shi, Zhao Yong" sort="Shi, Zhao Yong" uniqKey="Shi Z" first="Zhao Yong" last="Shi">Zhao Yong Shi</name>
</author>
<author>
<name sortKey="Xu, Xiao Feng" sort="Xu, Xiao Feng" uniqKey="Xu X" first="Xiao Feng" last="Xu">Xiao Feng Xu</name>
</author>
<author>
<name sortKey="He, Xin Hua" sort="He, Xin Hua" uniqKey="He X" first="Xin Hua" last="He">Xin Hua He</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21347374</idno>
<idno type="pmid">21347374</idno>
<idno type="doi">10.1371/journal.pone.0016949</idno>
<idno type="pmc">PMC3036715</idno>
<idno type="wicri:Area/Main/Corpus">002398</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002398</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils.</title>
<author>
<name sortKey="Wang, Fa Yuan" sort="Wang, Fa Yuan" uniqKey="Wang F" first="Fa Yuan" last="Wang">Fa Yuan Wang</name>
<affiliation>
<nlm:affiliation>Agricultural College, Henan University of Science and Technology, Luoyang, China. wfy1975@163.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tong, Rui Jian" sort="Tong, Rui Jian" uniqKey="Tong R" first="Rui Jian" last="Tong">Rui Jian Tong</name>
</author>
<author>
<name sortKey="Shi, Zhao Yong" sort="Shi, Zhao Yong" uniqKey="Shi Z" first="Zhao Yong" last="Shi">Zhao Yong Shi</name>
</author>
<author>
<name sortKey="Xu, Xiao Feng" sort="Xu, Xiao Feng" uniqKey="Xu X" first="Xiao Feng" last="Xu">Xiao Feng Xu</name>
</author>
<author>
<name sortKey="He, Xin Hua" sort="He, Xin Hua" uniqKey="He X" first="Xin Hua" last="He">Xin Hua He</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allium (growth & development)</term>
<term>Allium (metabolism)</term>
<term>Allium (microbiology)</term>
<term>Daucus carota (growth & development)</term>
<term>Daucus carota (metabolism)</term>
<term>Daucus carota (microbiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Organothiophosphorus Compounds (metabolism)</term>
<term>Pesticide Residues (metabolism)</term>
<term>Phosphoric Monoester Hydrolases (metabolism)</term>
<term>Soil (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Vegetables (growth & development)</term>
<term>Vegetables (metabolism)</term>
<term>Vegetables (microbiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Organothiophosphorus Compounds</term>
<term>Pesticide Residues</term>
<term>Phosphoric Monoester Hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Allium</term>
<term>Daucus carota</term>
<term>Vegetables</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Allium</term>
<term>Daucus carota</term>
<term>Vegetables</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Allium</term>
<term>Daucus carota</term>
<term>Vegetables</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>As one of the most widely used organophosphate insecticides in vegetable production, phoxim (C(12)H(15)N(2)O(3)PS) is often found as residues in crops and soils and thus poses a potential threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to the decrease of organophosphate residues in crops and/or the degradation in soils, but such effects remain unknown.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>A greenhouse pot experiment studied the influence of AM fungi and phoxim application on the growth of carrot and green onion, and phoxim concentrations in the two vegetables and their soil media. Treatments included three AM fungal inoculations with Glomus intraradices BEG 141, G. mosseae BEG 167, and a nonmycorrhizal control, and four phoxim application rates (0, 200, 400, 800 mg l(-1), while 400 mg l(-1) rate is the recommended dose in the vegetable production system). Carrot and green onion were grown in a greenhouse for 130 d and 150 d. Phoxim solution (100 ml) was poured into each pot around the roots 14d before plant harvest. Results showed that mycorrhizal colonization was higher than 70%, and phoxim application inhibited AM colonization on carrot but not on green onion. Compared with the nonmycorrhizal controls, both shoot and root fresh weights of these two vegetables were significantly increased by AM inoculations irrespective of phoxim application rates. Phoxim concentrations in shoots, roots and soils were increased with the increase of phoxim application rate, but significantly decreased by the AM inoculations. Soil phosphatase activity was enhanced by both AM inocula, but not affected by phoxim application rate. In general, G. intraradices BEG 141 had more pronounced effects than G. mosseae BEG 167 on the increase of fresh weight production in both carrot and green onion, and the decrease of phoxim concentrations in plants and soils.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS/SIGNIFICANCE</b>
</p>
<p>Our results indicate a promising potential of AM fungi for enhancing vegetable production and reducing organophosphorus pesticide residues in plant tissues and their growth media, as well as for the phytoremediation of organophosphorus pesticide-contaminated soils.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21347374</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils.</ArticleTitle>
<Pagination>
<MedlinePgn>e16949</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0016949</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">As one of the most widely used organophosphate insecticides in vegetable production, phoxim (C(12)H(15)N(2)O(3)PS) is often found as residues in crops and soils and thus poses a potential threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to the decrease of organophosphate residues in crops and/or the degradation in soils, but such effects remain unknown.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">A greenhouse pot experiment studied the influence of AM fungi and phoxim application on the growth of carrot and green onion, and phoxim concentrations in the two vegetables and their soil media. Treatments included three AM fungal inoculations with Glomus intraradices BEG 141, G. mosseae BEG 167, and a nonmycorrhizal control, and four phoxim application rates (0, 200, 400, 800 mg l(-1), while 400 mg l(-1) rate is the recommended dose in the vegetable production system). Carrot and green onion were grown in a greenhouse for 130 d and 150 d. Phoxim solution (100 ml) was poured into each pot around the roots 14d before plant harvest. Results showed that mycorrhizal colonization was higher than 70%, and phoxim application inhibited AM colonization on carrot but not on green onion. Compared with the nonmycorrhizal controls, both shoot and root fresh weights of these two vegetables were significantly increased by AM inoculations irrespective of phoxim application rates. Phoxim concentrations in shoots, roots and soils were increased with the increase of phoxim application rate, but significantly decreased by the AM inoculations. Soil phosphatase activity was enhanced by both AM inocula, but not affected by phoxim application rate. In general, G. intraradices BEG 141 had more pronounced effects than G. mosseae BEG 167 on the increase of fresh weight production in both carrot and green onion, and the decrease of phoxim concentrations in plants and soils.</AbstractText>
<AbstractText Label="CONCLUSIONS/SIGNIFICANCE" NlmCategory="CONCLUSIONS">Our results indicate a promising potential of AM fungi for enhancing vegetable production and reducing organophosphorus pesticide residues in plant tissues and their growth media, as well as for the phytoremediation of organophosphorus pesticide-contaminated soils.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Fa Yuan</ForeName>
<Initials>FY</Initials>
<AffiliationInfo>
<Affiliation>Agricultural College, Henan University of Science and Technology, Luoyang, China. wfy1975@163.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Rui Jian</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Zhao Yong</ForeName>
<Initials>ZY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xiao Feng</ForeName>
<Initials>XF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xin Hua</ForeName>
<Initials>XH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009946">Organothiophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010573">Pesticide Residues</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6F5V775VPO</RegistryNumber>
<NameOfSubstance UI="C003135">phoxim</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.2</RegistryNumber>
<NameOfSubstance UI="D010744">Phosphoric Monoester Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000490" MajorTopicYN="N">Allium</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018552" MajorTopicYN="N">Daucus carota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009946" MajorTopicYN="N">Organothiophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010573" MajorTopicYN="N">Pesticide Residues</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010744" MajorTopicYN="N">Phosphoric Monoester Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014675" MajorTopicYN="N">Vegetables</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21347374</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0016949</ArticleId>
<ArticleId IdType="pmc">PMC3036715</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Huan Jing Ke Xue. 2007 Dec;28(12):2833-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18290446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2008 Feb;151(3):569-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2003 Jun 1;37(11):2371-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12831019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2006 Oct 11;137(3):1750-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1999 Aug;106(2):169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15093044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wei Sheng Yan Jiu. 2000 Jan 30;29(1):4-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12725028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 1999 Mar;2(1):43-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10943391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009 Mar;26(3):340-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19680907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Mar;146(2):452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16935399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci. 2005;12(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15793557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2001 Jul 1;35(13):2773-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11452608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wei Sheng Yan Jiu. 2000 Mar 30;29(2):65-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12725074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ying Yong Sheng Tai Xue Bao. 2004 Aug;15(8):1459-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2007 Oct;47(5):378-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17910101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2008 Oct;81(4):377-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18651087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2007 Aug;21(5):950-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17383850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 20;413(6853):297-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2008 May 15;394(2-3):230-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18313725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 Jun 15;165(1-3):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002398 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002398 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21347374
   |texte=   Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21347374" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020