Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment.

Identifieur interne : 002383 ( Main/Corpus ); précédent : 002382; suivant : 002384

Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment.

Auteurs : Kate H. Orwin ; Miko U F. Kirschbaum ; Mark G. St John ; Ian A. Dickie

Source :

RBID : pubmed:21395963

English descriptors

Abstract

Understanding the factors that drive soil carbon (C) accumulation is of fundamental importance given their potential to mitigate climate change. Much research has focused on the relationship between plant traits and C sequestration, but no studies to date have quantitatively considered traits of their mycorrhizal symbionts. Here, we use a modelling approach to assess the contribution of an important mycorrhizal fungal trait, organic nutrient uptake, to soil C accumulation. We show that organic nutrient uptake can significantly increase soil C storage, and that it has a greater effect under nutrient-limited conditions. The main mechanism behind this was an increase in plant C fixation and subsequent increased C inputs to soil through mycorrhizal fungi. Reduced decomposition due to increased nutrient limitation of saprotrophs also played a role. Our results indicate that direct uptake of nutrients from organic pools by mycorrhizal fungi could have a significant effect on ecosystem C cycling and storage.

DOI: 10.1111/j.1461-0248.2011.01611.x
PubMed: 21395963

Links to Exploration step

pubmed:21395963

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment.</title>
<author>
<name sortKey="Orwin, Kate H" sort="Orwin, Kate H" uniqKey="Orwin K" first="Kate H" last="Orwin">Kate H. Orwin</name>
<affiliation>
<nlm:affiliation>Soil and Ecosystem Ecology Laboratory, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. k.orwin@lancaster.ac.uk</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kirschbaum, Miko U F" sort="Kirschbaum, Miko U F" uniqKey="Kirschbaum M" first="Miko U F" last="Kirschbaum">Miko U F. Kirschbaum</name>
</author>
<author>
<name sortKey="St John, Mark G" sort="St John, Mark G" uniqKey="St John M" first="Mark G" last="St John">Mark G. St John</name>
</author>
<author>
<name sortKey="Dickie, Ian A" sort="Dickie, Ian A" uniqKey="Dickie I" first="Ian A" last="Dickie">Ian A. Dickie</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21395963</idno>
<idno type="pmid">21395963</idno>
<idno type="doi">10.1111/j.1461-0248.2011.01611.x</idno>
<idno type="wicri:Area/Main/Corpus">002383</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002383</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment.</title>
<author>
<name sortKey="Orwin, Kate H" sort="Orwin, Kate H" uniqKey="Orwin K" first="Kate H" last="Orwin">Kate H. Orwin</name>
<affiliation>
<nlm:affiliation>Soil and Ecosystem Ecology Laboratory, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. k.orwin@lancaster.ac.uk</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kirschbaum, Miko U F" sort="Kirschbaum, Miko U F" uniqKey="Kirschbaum M" first="Miko U F" last="Kirschbaum">Miko U F. Kirschbaum</name>
</author>
<author>
<name sortKey="St John, Mark G" sort="St John, Mark G" uniqKey="St John M" first="Mark G" last="St John">Mark G. St John</name>
</author>
<author>
<name sortKey="Dickie, Ian A" sort="Dickie, Ian A" uniqKey="Dickie I" first="Ian A" last="Dickie">Ian A. Dickie</name>
</author>
</analytic>
<series>
<title level="j">Ecology letters</title>
<idno type="eISSN">1461-0248</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Climate Change (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Soil (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate Change</term>
<term>Ecosystem</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding the factors that drive soil carbon (C) accumulation is of fundamental importance given their potential to mitigate climate change. Much research has focused on the relationship between plant traits and C sequestration, but no studies to date have quantitatively considered traits of their mycorrhizal symbionts. Here, we use a modelling approach to assess the contribution of an important mycorrhizal fungal trait, organic nutrient uptake, to soil C accumulation. We show that organic nutrient uptake can significantly increase soil C storage, and that it has a greater effect under nutrient-limited conditions. The main mechanism behind this was an increase in plant C fixation and subsequent increased C inputs to soil through mycorrhizal fungi. Reduced decomposition due to increased nutrient limitation of saprotrophs also played a role. Our results indicate that direct uptake of nutrients from organic pools by mycorrhizal fungi could have a significant effect on ecosystem C cycling and storage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21395963</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1461-0248</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Ecology letters</Title>
<ISOAbbreviation>Ecol Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment.</ArticleTitle>
<Pagination>
<MedlinePgn>493-502</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1461-0248.2011.01611.x</ELocationID>
<Abstract>
<AbstractText>Understanding the factors that drive soil carbon (C) accumulation is of fundamental importance given their potential to mitigate climate change. Much research has focused on the relationship between plant traits and C sequestration, but no studies to date have quantitatively considered traits of their mycorrhizal symbionts. Here, we use a modelling approach to assess the contribution of an important mycorrhizal fungal trait, organic nutrient uptake, to soil C accumulation. We show that organic nutrient uptake can significantly increase soil C storage, and that it has a greater effect under nutrient-limited conditions. The main mechanism behind this was an increase in plant C fixation and subsequent increased C inputs to soil through mycorrhizal fungi. Reduced decomposition due to increased nutrient limitation of saprotrophs also played a role. Our results indicate that direct uptake of nutrients from organic pools by mycorrhizal fungi could have a significant effect on ecosystem C cycling and storage.</AbstractText>
<CopyrightInformation>© 2011 Blackwell Publishing Ltd/CNRS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Orwin</LastName>
<ForeName>Kate H</ForeName>
<Initials>KH</Initials>
<AffiliationInfo>
<Affiliation>Soil and Ecosystem Ecology Laboratory, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. k.orwin@lancaster.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kirschbaum</LastName>
<ForeName>Miko U F</ForeName>
<Initials>MU</Initials>
</Author>
<Author ValidYN="Y">
<LastName>St John</LastName>
<ForeName>Mark G</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dickie</LastName>
<ForeName>Ian A</ForeName>
<Initials>IA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Lett</MedlineTA>
<NlmUniqueID>101121949</NlmUniqueID>
<ISSNLinking>1461-023X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="N">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21395963</ArticleId>
<ArticleId IdType="doi">10.1111/j.1461-0248.2011.01611.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002383 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002383 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21395963
   |texte=   Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21395963" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020