Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil.

Identifieur interne : 002370 ( Main/Corpus ); précédent : 002369; suivant : 002371

Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil.

Auteurs : Ming Nie ; Yijing Wang ; Jiayi Yu ; Ming Xiao ; Lifen Jiang ; Ji Yang ; Changming Fang ; Jiakuan Chen ; Bo Li

Source :

RBID : pubmed:21437257

English descriptors

Abstract

Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants' ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil.

DOI: 10.1371/journal.pone.0017961
PubMed: 21437257
PubMed Central: PMC3060916

Links to Exploration step

pubmed:21437257

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil.</title>
<author>
<name sortKey="Nie, Ming" sort="Nie, Ming" uniqKey="Nie M" first="Ming" last="Nie">Ming Nie</name>
<affiliation>
<nlm:affiliation>Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yijing" sort="Wang, Yijing" uniqKey="Wang Y" first="Yijing" last="Wang">Yijing Wang</name>
</author>
<author>
<name sortKey="Yu, Jiayi" sort="Yu, Jiayi" uniqKey="Yu J" first="Jiayi" last="Yu">Jiayi Yu</name>
</author>
<author>
<name sortKey="Xiao, Ming" sort="Xiao, Ming" uniqKey="Xiao M" first="Ming" last="Xiao">Ming Xiao</name>
</author>
<author>
<name sortKey="Jiang, Lifen" sort="Jiang, Lifen" uniqKey="Jiang L" first="Lifen" last="Jiang">Lifen Jiang</name>
</author>
<author>
<name sortKey="Yang, Ji" sort="Yang, Ji" uniqKey="Yang J" first="Ji" last="Yang">Ji Yang</name>
</author>
<author>
<name sortKey="Fang, Changming" sort="Fang, Changming" uniqKey="Fang C" first="Changming" last="Fang">Changming Fang</name>
</author>
<author>
<name sortKey="Chen, Jiakuan" sort="Chen, Jiakuan" uniqKey="Chen J" first="Jiakuan" last="Chen">Jiakuan Chen</name>
</author>
<author>
<name sortKey="Li, Bo" sort="Li, Bo" uniqKey="Li B" first="Bo" last="Li">Bo Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21437257</idno>
<idno type="pmid">21437257</idno>
<idno type="doi">10.1371/journal.pone.0017961</idno>
<idno type="pmc">PMC3060916</idno>
<idno type="wicri:Area/Main/Corpus">002370</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002370</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil.</title>
<author>
<name sortKey="Nie, Ming" sort="Nie, Ming" uniqKey="Nie M" first="Ming" last="Nie">Ming Nie</name>
<affiliation>
<nlm:affiliation>Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yijing" sort="Wang, Yijing" uniqKey="Wang Y" first="Yijing" last="Wang">Yijing Wang</name>
</author>
<author>
<name sortKey="Yu, Jiayi" sort="Yu, Jiayi" uniqKey="Yu J" first="Jiayi" last="Yu">Jiayi Yu</name>
</author>
<author>
<name sortKey="Xiao, Ming" sort="Xiao, Ming" uniqKey="Xiao M" first="Ming" last="Xiao">Ming Xiao</name>
</author>
<author>
<name sortKey="Jiang, Lifen" sort="Jiang, Lifen" uniqKey="Jiang L" first="Lifen" last="Jiang">Lifen Jiang</name>
</author>
<author>
<name sortKey="Yang, Ji" sort="Yang, Ji" uniqKey="Yang J" first="Ji" last="Yang">Ji Yang</name>
</author>
<author>
<name sortKey="Fang, Changming" sort="Fang, Changming" uniqKey="Fang C" first="Changming" last="Fang">Changming Fang</name>
</author>
<author>
<name sortKey="Chen, Jiakuan" sort="Chen, Jiakuan" uniqKey="Chen J" first="Jiakuan" last="Chen">Jiakuan Chen</name>
</author>
<author>
<name sortKey="Li, Bo" sort="Li, Bo" uniqKey="Li B" first="Bo" last="Li">Bo Li</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (genetics)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>China (MeSH)</term>
<term>Colony Count, Microbial (MeSH)</term>
<term>Genes, Bacterial (genetics)</term>
<term>Host-Pathogen Interactions (physiology)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Petroleum (analysis)</term>
<term>Petroleum (microbiology)</term>
<term>Plant Development (MeSH)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Quantitative Trait, Heritable (MeSH)</term>
<term>Regression Analysis (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Soil Pollutants (isolation & purification)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Petroleum</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="microbiology" xml:lang="en">
<term>Petroleum</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>Genes, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Colony Count, Microbial</term>
<term>Plant Development</term>
<term>Quantitative Trait, Heritable</term>
<term>Regression Analysis</term>
<term>Soil Microbiology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants' ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21437257</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil.</ArticleTitle>
<Pagination>
<MedlinePgn>e17961</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0017961</ELocationID>
<Abstract>
<AbstractText>Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants' ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nie</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yijing</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Jiayi</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Lifen</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Ji</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Changming</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jiakuan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Bo</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010578">Petroleum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015169" MajorTopicYN="N">Colony Count, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010578" MajorTopicYN="N">Petroleum</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019655" MajorTopicYN="N">Quantitative Trait, Heritable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21437257</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0017961</ArticleId>
<ArticleId IdType="pmc">PMC3060916</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Biotechnol. 2004 Jun;15(3):225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15193330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jun;69(6):3350-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Sep;64(9):3422-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9726892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Feb;133(3):455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2005;12(1):34-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15768739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:15-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Jul 15;39(14):5285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16082958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2006 Oct;52(3):523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16944337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biodegradation. 2007 Apr;18(2):133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16897581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2007 May;82(2):213-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17437558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2007 Aug 1;41(15):5426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17822112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Phytoremediation. 2008 Nov-Dec;10(6):486-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19260228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 Sep 15;168(2-3):1490-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2010 Dec 23;6(6):811-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2011 Jan;159(1):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20951484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 May;66(5):1814-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10788344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2000 Jul;41(1-2):219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10819204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2001 Mar-Apr;30(2):395-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11285899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Environ Res. 2001 Sep;52(3):195-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11570802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):483-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1998 Apr;22(1):21-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9640645</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002370 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002370 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21437257
   |texte=   Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21437257" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020