Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed.

Identifieur interne : 002290 ( Main/Corpus ); précédent : 002289; suivant : 002291

Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed.

Auteurs : Marcela Ková Ová ; Tomáš Frantík ; Helena Koblihová ; Krist Na Bartů Ková ; Zora N Vltová ; Miroslav Vosátka

Source :

RBID : pubmed:21624119

English descriptors

Abstract

BACKGROUND

Fallopia japonica and its hybrid, F. xbohemica, due to their fast spread, are famous as nature threats rather than blessings. Their fast growth rate, height, coverage, efficient nutrient translocation between tillers and organs and high phenolic production, may be perceived either as dangerous or beneficial features that bring about the elimination of native species or a life-supporting source. To the best of our knowledge, there have not been any studies aimed at increasing the targeted production of medically desired compounds by these remarkable plants. We designed a two-year pot experiment to determine the extent to which stilbene (resveratrol, piceatannol, resveratrolosid, piceid and astringins) and emodin contents of F. japonica, F. sachalinensis and two selected F. xbohemica clones are affected by soil nitrogen (N) supply, leaf damage and mycorrhizal inoculation.

RESULTS

1) Knotweeds are able to grow on substrates with extremely low nitrogen content and have a high efficiency of N translocation. The fast-spreading hybrid clones store less N in their rhizomes than the parental species. 2) The highest concentrations of stilbenes were found in the belowground biomass of F. japonica. However, because of the high belowground biomass of one clone of F. xbohemica, this hybrid produced more stilbenes per plant than F. japonica. 3) Leaf damage increased the resveratrol and emodin contents in the belowground biomass of the non-inoculated knotweed plants. 4) Although knotweed is supposed to be a non-mycorrhizal species, its roots are able to host the fungi. Inoculation with mycorrhizal fungi resulted in up to 2% root colonisation. 5) Both leaf damage and inoculation with mycorrhizal fungi elicited an increase of the piceid (resveratrol-glucoside) content in the belowground biomass of F. japonica. However, the mycorrhizal fungi only elicited this response in the absence of leaf damage. Because the leaf damage suppressed the effect of the root fungi, the effect of leaf damage prevailed over the effect of the mycorrhizal fungi on the piceid content in the belowground biomass.

CONCLUSIONS

Two widely spread knotweed species, F. japonica and F. xbohemica, are promising sources of compounds that may have a positive impact on human health. The content of some of the target compounds in the plant tissues can be significantly altered by the cultivation conditions including stress imposed on the plants, inoculation with mycorrhizal fungi and selection of the appropriate plant clone.


DOI: 10.1186/1471-2229-11-98
PubMed: 21624119
PubMed Central: PMC3123627

Links to Exploration step

pubmed:21624119

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed.</title>
<author>
<name sortKey="Kova Ova, Marcela" sort="Kova Ova, Marcela" uniqKey="Kova Ova M" first="Marcela" last="Ková Ová">Marcela Ková Ová</name>
<affiliation>
<nlm:affiliation>Institute of Botany, Czech Academy of Science, Průhonice 1, 252 43, Czech Republic. marcela.kovarova@ibot.cas.cz</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frantik, Tomas" sort="Frantik, Tomas" uniqKey="Frantik T" first="Tomáš" last="Frantík">Tomáš Frantík</name>
</author>
<author>
<name sortKey="Koblihova, Helena" sort="Koblihova, Helena" uniqKey="Koblihova H" first="Helena" last="Koblihová">Helena Koblihová</name>
</author>
<author>
<name sortKey="Bartu Kova, Krist Na" sort="Bartu Kova, Krist Na" uniqKey="Bartu Kova K" first="Krist Na" last="Bartů Ková">Krist Na Bartů Ková</name>
</author>
<author>
<name sortKey="N Vltova, Zora" sort="N Vltova, Zora" uniqKey="N Vltova Z" first="Zora" last="N Vltová">Zora N Vltová</name>
</author>
<author>
<name sortKey="Vosatka, Miroslav" sort="Vosatka, Miroslav" uniqKey="Vosatka M" first="Miroslav" last="Vosátka">Miroslav Vosátka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21624119</idno>
<idno type="pmid">21624119</idno>
<idno type="doi">10.1186/1471-2229-11-98</idno>
<idno type="pmc">PMC3123627</idno>
<idno type="wicri:Area/Main/Corpus">002290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002290</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed.</title>
<author>
<name sortKey="Kova Ova, Marcela" sort="Kova Ova, Marcela" uniqKey="Kova Ova M" first="Marcela" last="Ková Ová">Marcela Ková Ová</name>
<affiliation>
<nlm:affiliation>Institute of Botany, Czech Academy of Science, Průhonice 1, 252 43, Czech Republic. marcela.kovarova@ibot.cas.cz</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frantik, Tomas" sort="Frantik, Tomas" uniqKey="Frantik T" first="Tomáš" last="Frantík">Tomáš Frantík</name>
</author>
<author>
<name sortKey="Koblihova, Helena" sort="Koblihova, Helena" uniqKey="Koblihova H" first="Helena" last="Koblihová">Helena Koblihová</name>
</author>
<author>
<name sortKey="Bartu Kova, Krist Na" sort="Bartu Kova, Krist Na" uniqKey="Bartu Kova K" first="Krist Na" last="Bartů Ková">Krist Na Bartů Ková</name>
</author>
<author>
<name sortKey="N Vltova, Zora" sort="N Vltova, Zora" uniqKey="N Vltova Z" first="Zora" last="N Vltová">Zora N Vltová</name>
</author>
<author>
<name sortKey="Vosatka, Miroslav" sort="Vosatka, Miroslav" uniqKey="Vosatka M" first="Miroslav" last="Vosátka">Miroslav Vosátka</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Emodin (metabolism)</term>
<term>Fertilizers (MeSH)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Nitrogen (metabolism)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (drug effects)</term>
<term>Polygonum (chemistry)</term>
<term>Polygonum (growth & development)</term>
<term>Polygonum (microbiology)</term>
<term>Rhizome (chemistry)</term>
<term>Rhizome (microbiology)</term>
<term>Seasons (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Stilbenes (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Emodin</term>
<term>Nitrogen</term>
<term>Stilbenes</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Polygonum</term>
<term>Rhizome</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
<term>Polygonum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Polygonum</term>
<term>Rhizome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Fertilizers</term>
<term>Seasons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Fallopia japonica and its hybrid, F. xbohemica, due to their fast spread, are famous as nature threats rather than blessings. Their fast growth rate, height, coverage, efficient nutrient translocation between tillers and organs and high phenolic production, may be perceived either as dangerous or beneficial features that bring about the elimination of native species or a life-supporting source. To the best of our knowledge, there have not been any studies aimed at increasing the targeted production of medically desired compounds by these remarkable plants. We designed a two-year pot experiment to determine the extent to which stilbene (resveratrol, piceatannol, resveratrolosid, piceid and astringins) and emodin contents of F. japonica, F. sachalinensis and two selected F. xbohemica clones are affected by soil nitrogen (N) supply, leaf damage and mycorrhizal inoculation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>1) Knotweeds are able to grow on substrates with extremely low nitrogen content and have a high efficiency of N translocation. The fast-spreading hybrid clones store less N in their rhizomes than the parental species. 2) The highest concentrations of stilbenes were found in the belowground biomass of F. japonica. However, because of the high belowground biomass of one clone of F. xbohemica, this hybrid produced more stilbenes per plant than F. japonica. 3) Leaf damage increased the resveratrol and emodin contents in the belowground biomass of the non-inoculated knotweed plants. 4) Although knotweed is supposed to be a non-mycorrhizal species, its roots are able to host the fungi. Inoculation with mycorrhizal fungi resulted in up to 2% root colonisation. 5) Both leaf damage and inoculation with mycorrhizal fungi elicited an increase of the piceid (resveratrol-glucoside) content in the belowground biomass of F. japonica. However, the mycorrhizal fungi only elicited this response in the absence of leaf damage. Because the leaf damage suppressed the effect of the root fungi, the effect of leaf damage prevailed over the effect of the mycorrhizal fungi on the piceid content in the belowground biomass.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Two widely spread knotweed species, F. japonica and F. xbohemica, are promising sources of compounds that may have a positive impact on human health. The content of some of the target compounds in the plant tissues can be significantly altered by the cultivation conditions including stress imposed on the plants, inoculation with mycorrhizal fungi and selection of the appropriate plant clone.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21624119</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed.</ArticleTitle>
<Pagination>
<MedlinePgn>98</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-11-98</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Fallopia japonica and its hybrid, F. xbohemica, due to their fast spread, are famous as nature threats rather than blessings. Their fast growth rate, height, coverage, efficient nutrient translocation between tillers and organs and high phenolic production, may be perceived either as dangerous or beneficial features that bring about the elimination of native species or a life-supporting source. To the best of our knowledge, there have not been any studies aimed at increasing the targeted production of medically desired compounds by these remarkable plants. We designed a two-year pot experiment to determine the extent to which stilbene (resveratrol, piceatannol, resveratrolosid, piceid and astringins) and emodin contents of F. japonica, F. sachalinensis and two selected F. xbohemica clones are affected by soil nitrogen (N) supply, leaf damage and mycorrhizal inoculation.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">1) Knotweeds are able to grow on substrates with extremely low nitrogen content and have a high efficiency of N translocation. The fast-spreading hybrid clones store less N in their rhizomes than the parental species. 2) The highest concentrations of stilbenes were found in the belowground biomass of F. japonica. However, because of the high belowground biomass of one clone of F. xbohemica, this hybrid produced more stilbenes per plant than F. japonica. 3) Leaf damage increased the resveratrol and emodin contents in the belowground biomass of the non-inoculated knotweed plants. 4) Although knotweed is supposed to be a non-mycorrhizal species, its roots are able to host the fungi. Inoculation with mycorrhizal fungi resulted in up to 2% root colonisation. 5) Both leaf damage and inoculation with mycorrhizal fungi elicited an increase of the piceid (resveratrol-glucoside) content in the belowground biomass of F. japonica. However, the mycorrhizal fungi only elicited this response in the absence of leaf damage. Because the leaf damage suppressed the effect of the root fungi, the effect of leaf damage prevailed over the effect of the mycorrhizal fungi on the piceid content in the belowground biomass.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Two widely spread knotweed species, F. japonica and F. xbohemica, are promising sources of compounds that may have a positive impact on human health. The content of some of the target compounds in the plant tissues can be significantly altered by the cultivation conditions including stress imposed on the plants, inoculation with mycorrhizal fungi and selection of the appropriate plant clone.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kovářová</LastName>
<ForeName>Marcela</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Botany, Czech Academy of Science, Průhonice 1, 252 43, Czech Republic. marcela.kovarova@ibot.cas.cz</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frantík</LastName>
<ForeName>Tomáš</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koblihová</LastName>
<ForeName>Helena</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bartůňková</LastName>
<ForeName>Kristýna</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nývltová</LastName>
<ForeName>Zora</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vosátka</LastName>
<ForeName>Miroslav</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005308">Fertilizers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013267">Stilbenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>KA46RNI6HN</RegistryNumber>
<NameOfSubstance UI="D004642">Emodin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004642" MajorTopicYN="N">Emodin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005308" MajorTopicYN="N">Fertilizers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028502" MajorTopicYN="N">Polygonum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027343" MajorTopicYN="N">Rhizome</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013267" MajorTopicYN="N">Stilbenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>12</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>05</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21624119</ArticleId>
<ArticleId IdType="pii">1471-2229-11-98</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-11-98</ArticleId>
<ArticleId IdType="pmc">PMC3123627</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Agric Food Chem. 2005 Jan 26;53(2):356-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15656672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Nutr Food Res. 2005 May;49(5):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15830333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2007 Mar;6(3):987-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2002 Jan 15;63(2):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chin Med J (Engl). 2007 Oct 5;120(19):1710-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17935676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Jan;15(1):275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24271442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 2005 May;28(5):557-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15974442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2004 Dec;134(12):3219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15570015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Nov;20(8):519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009;10:136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Oct 8;51(21):6151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2004 Mar 19;74(18):2279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14987952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2003 May;24(5):869-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):938-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Feb 22;54(4):1243-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2008;614:179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18290328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Feb;69(3):700-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17963800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2000 Jun 1;60(11):2800-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10850417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2001 Feb;47(2):243-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Oct;90(10):1487-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1085-1097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Biochem. 1997 Mar;30(2):91-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9127691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Jan;98(1):38-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Biother Radiopharm. 2008 Apr;23(2):222-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18454691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20113506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Mar;233(3):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21312042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 1998 Oct;61(10):1313-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Jun;34(3):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9225853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19937257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002290 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002290 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21624119
   |texte=   Effect of clone selection, nitrogen supply, leaf damage and mycorrhizal fungi on stilbene and emodin production in knotweed.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:21624119" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020