Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?

Identifieur interne : 002169 ( Main/Corpus ); précédent : 002168; suivant : 002170

How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?

Auteurs : Mian Gu ; Aiqun Chen ; Xiaoli Dai ; Wei Liu ; Guohua Xu

Source :

RBID : pubmed:22019636

English descriptors

Abstract

Most terrestrial plant roots form mutualistic symbiosis with soil-borne arbuscular mycorrhizal fungi (AMF), a characteristic feature of which is nutrient exchange between the two symbiotic partners. Phosphate (Pi) is the main benefit the host plants acquired from the AMF. It has long been a common realization that high Pi supply could suppress the AMF development. However, the direct molecular regulatory mechanisms underlying this plant directed suppression are lacking. Here, we reviewed the recent work providing the evidences that high Pi supply induces transcriptional alteration, leading to the inhibition of AMF development at different stages of AM symbiosis, and gave our view on potential cross-talk among Pi starvation, AM as well as phytohormone signaling.

DOI: 10.4161/psb.6.9.16365
PubMed: 22019636
PubMed Central: PMC3258057

Links to Exploration step

pubmed:22019636

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?</title>
<author>
<name sortKey="Gu, Mian" sort="Gu, Mian" uniqKey="Gu M" first="Mian" last="Gu">Mian Gu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Aiqun" sort="Chen, Aiqun" uniqKey="Chen A" first="Aiqun" last="Chen">Aiqun Chen</name>
</author>
<author>
<name sortKey="Dai, Xiaoli" sort="Dai, Xiaoli" uniqKey="Dai X" first="Xiaoli" last="Dai">Xiaoli Dai</name>
</author>
<author>
<name sortKey="Liu, Wei" sort="Liu, Wei" uniqKey="Liu W" first="Wei" last="Liu">Wei Liu</name>
</author>
<author>
<name sortKey="Xu, Guohua" sort="Xu, Guohua" uniqKey="Xu G" first="Guohua" last="Xu">Guohua Xu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22019636</idno>
<idno type="pmid">22019636</idno>
<idno type="doi">10.4161/psb.6.9.16365</idno>
<idno type="pmc">PMC3258057</idno>
<idno type="wicri:Area/Main/Corpus">002169</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002169</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?</title>
<author>
<name sortKey="Gu, Mian" sort="Gu, Mian" uniqKey="Gu M" first="Mian" last="Gu">Mian Gu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Aiqun" sort="Chen, Aiqun" uniqKey="Chen A" first="Aiqun" last="Chen">Aiqun Chen</name>
</author>
<author>
<name sortKey="Dai, Xiaoli" sort="Dai, Xiaoli" uniqKey="Dai X" first="Xiaoli" last="Dai">Xiaoli Dai</name>
</author>
<author>
<name sortKey="Liu, Wei" sort="Liu, Wei" uniqKey="Liu W" first="Wei" last="Liu">Wei Liu</name>
</author>
<author>
<name sortKey="Xu, Guohua" sort="Xu, Guohua" uniqKey="Xu G" first="Guohua" last="Xu">Guohua Xu</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Phosphates (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Plants (microbiology)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most terrestrial plant roots form mutualistic symbiosis with soil-borne arbuscular mycorrhizal fungi (AMF), a characteristic feature of which is nutrient exchange between the two symbiotic partners. Phosphate (Pi) is the main benefit the host plants acquired from the AMF. It has long been a common realization that high Pi supply could suppress the AMF development. However, the direct molecular regulatory mechanisms underlying this plant directed suppression are lacking. Here, we reviewed the recent work providing the evidences that high Pi supply induces transcriptional alteration, leading to the inhibition of AMF development at different stages of AM symbiosis, and gave our view on potential cross-talk among Pi starvation, AM as well as phytohormone signaling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22019636</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>03</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2011</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?</ArticleTitle>
<Pagination>
<MedlinePgn>1300-4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/psb.6.9.16365</ELocationID>
<Abstract>
<AbstractText>Most terrestrial plant roots form mutualistic symbiosis with soil-borne arbuscular mycorrhizal fungi (AMF), a characteristic feature of which is nutrient exchange between the two symbiotic partners. Phosphate (Pi) is the main benefit the host plants acquired from the AMF. It has long been a common realization that high Pi supply could suppress the AMF development. However, the direct molecular regulatory mechanisms underlying this plant directed suppression are lacking. Here, we reviewed the recent work providing the evidences that high Pi supply induces transcriptional alteration, leading to the inhibition of AMF development at different stages of AM symbiosis, and gave our view on potential cross-talk among Pi starvation, AM as well as phytohormone signaling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Mian</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Aiqun</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Xiaoli</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Guohua</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22019636</ArticleId>
<ArticleId IdType="pii">16365</ArticleId>
<ArticleId IdType="doi">10.4161/psb.6.9.16365</ArticleId>
<ArticleId IdType="pmc">PMC3258057</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jul;23(7):915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20521954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3258-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19106375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Aug 15;15(16):2122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Sep;6(9):e1001102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20838596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Mar;30(3):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):195-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Jun;12(3):312-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):721-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2413-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(8):2029-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(10):2491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17545228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(3):1049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):1157-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21106037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1002-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):2989-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):2120-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):11-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Feb;138(2):226-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jun;147(2):732-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):739-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1033-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21487049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jul;150(3):1541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):402-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(1):93-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18212031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):361-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18688730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):950-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:665-693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Feb;214(4):584-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11925041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):731-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jan;116(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9449838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(2):236-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15807785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Mar;3(2):428-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):817-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 22;414(6862):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jun;58(5):766-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):500-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19576840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jul;51(7):1095-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20403809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2509-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Nov;64(3):470-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20804456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jul;47(7):807-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16774930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb 1;61(3):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21091696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jul;51(7):1118-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542891</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002169 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002169 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22019636
   |texte=   How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:22019636" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020